

REMEDIAL ACTION QUARTERLY MONITORING REPORT

SECOND QUARTER – 2005 (8 of 120)

SKINNER LANDFILL SITE BUTLER COUNTY WEST CHESTER, OHIO

Prepared for:

Skinner Landfill Work Group c/o Ben Baker The Dow Chemical Company Michigan Operations 47 Building Midland, MI 48667

Prepared by:

Earth Tech, Inc. 2373 Progress Drive Hebron, KY 41048

1.0	INTR	RODUCTION	1
	1.1	General Information	1
	1.2	Site Location and Description	1
	1.3	Site History and Background	1
2.0	SAM	IPLING METHODS	2
3.0	RESU	ULTS	2
	3.1	Groundwater Levels	
	3.2	Groundwater-Waste Monitoring	
	3.3	Groundwater Analytical Results	
	3.4	Surface Water Analytical Results	
		FIGURES	
Site V	Vicinity 1	Map	1
one v	icinity i	Trup	
		TABLES	
		IADDED	
Grour	ndwater	· Elevations	1
Grour	ndwater/	/Waste Elevations	2
		Results Summary	
Surfac	ce Wate	er Results Summary	4
		APPENDICES	
			Appendix
POTE	ENTION	NMETRIC SURFACE MAP	A
SUM	MARY	OF ANALYTICAL RESULTS	В
	Grow	andwater Monitoring Wells	
		k Surface Water Sampling Locations	
		Off Surface Water Sampling Locations	
VALI	DATED	D LABORATORY ANALYTICAL RESULTS	C

LIST OF ACRONYMS

CP

AMP Air Monitoring Plan

AOC Administrative Order on Consent

ARAR Applicable or Relevant and Appropriate Requirements

BMR Baseline Monitor Report

BCDES Butler County Department of Environmental Services

bgs Below Ground Surface BZ Breathing Zone

CD&D Construction Debris and Demolition Waste

CERCLA Comprehensive Environmental Response, Compensation and Liability

Act

CGI Combustible Gas Indicator

CHSD Corporate Health and Safety Director
CIP Construction Implementation Plan
CLP Contract Laboratory Program
cm/sec Centimeters Per Second
CO Carbon Monoxide

CQA Construction Quality Assurance

CQAC Construction Quality Assurance Consultant

Contingency Plan

CRZ Contamination Reduction Zone
CRQL Contract Required Quantitation Limit
CSDI Contaminated Soils Design Investigation

CY Cubic Yard CZ Control Zone

DSW Division of Surface Water (OEPA)
DSR Division Safety Representative
EPA Environmental Protection Agency

EZ Exclusion Zone

FID Flame Ionization Detector

FML Flexible Membrane Liner (low density polyethylene)

FSP Field Sampling Plan FTB Film Tearing Bond

ft Feet

ft/sec Feet Per Second

GCL Geosynthetic Clay Layer

GCAL Gulf Coast Analytical Laboratories Inc.
GIS Groundwater Interceptor System

gpd Gallons Per Day gpm Gallons Per Minute

GWDI Groundwater Design Investigation

HAP Hazardous Air Pollutant
HASP Health and Safety Plan
HDPE High-Density Polyethylene
HSM Health and Safety Manager

IDLH Immediately Dangerous to Life or Health

IRM Interim Remedial Measures

kg/d Kilograms Per Day lb/day Pounds Per Day

LEL Lower Explosion Limit

LF Lineal Feet

LLDPE Linear Low-Density Polyethylene

μ Micron

μg/l Microgram per Liter
MSL Mean Sea Level

NIOSH National Institute for Occupational Safety and Health

NO_x Oxides of Nitrogen

NWI National Wetland Inventory

 O_3 Ozone

OAC Ohio Administrative Code

ODNR Ohio Department of Natural Resources
OEPA Ohio Environmental Protection Agency

ORC Ohio Revised Code

OSHA Occupational Safety and Health Administration

PEL Permissible Exposure Limit
PID Photoionization Detector
PLC Programmable Logic Controller

PM-10 Particulate Matter less than 10 microns

PRP Potentially Responsible Party
PPE Personal Protective Equipment
psi Pounds Per Square Inch
PQL Practical Quantitation Limit
QAPP Quality Assurance Project Plan

QA Quality Assurance
QC Quality Control

RCRA Resource Conservation and Recovery Act

RA Remedial Action RD Remedial Design

RHSS Regional Health & Safety Specialist
RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RPM Remedial Project Manager (USEPA)

RPO Resident Project Observer

SI Site Inspection SF Square Feet

SLWG Skinner Landfill Work Group

SO₂ Sulfur Dioxide

SOP Standard Operating Procedure

SOW Statement of Work

SPCC Spill Prevention Control and Counter Measure Plan

SSO Site Safety Officer
SVE Soil Vapor Extraction

SVOC Semi-Volatile Organic Compound

SZ Support Zone

TAL Target Analyte List
TCL Target Compound List
TDH Total Dynamic Head
TLV Threshold Limit Values
TSS Total Suspended Solids
TWA Time Weighted Average

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Services

USGS United States Geological Survey VOC Volatile Organic Compound

yr Year

WBGT Wet Bulb Globe Temperature

WZ Work Zone

1.0 INTRODUCTION

1.1 GENERAL INFORMATION

This quarterly monitoring report was prepared for the Skinner Landfill Superfund Site located in West Chester, Butler County, Ohio in accordance with the Operation and Maintenance - Long-Term Performance Plan (O&M-LTP Plan) dated August 2003. The O&M-LTP Plan was prepared to meet the requirements of the Record of Decision (ROD) dated June 4, 1993, the Statement of Work (SOW) dated April 6, 1994, the 100% Final Remedial Design dated June 21, 1996 and the Consent Decree dated April 7, 2001.

The remedial action (RA) post-construction O&M monitoring period began with the third quarter of 2003 and extends for a period of 30 years. This report documents the results of groundwater and surface water monitoring conducted during the second quarter of 2005, which is the 8th of 120 quarterly sampling events to be conducted during the 30-year monitoring period.

1.2 SITE LOCATION AND DESCRIPTION

Skinner Landfill is located approximately 15 miles north of Cincinnati, Ohio near West Chester, Butler County, Ohio in Township 3, Section 22, Range 2. The site is located along Cincinnati-Dayton Road, as shown in Figure 1. The site is bordered on the south by the East Fork of Mill Creek, on the north by wooded land, on the east by a Norfolk Southern Railway Company right-of-way, and on the west by a gravel driveway.

The site is located in a highly dissected area that slopes from a till-mantled-bedrock upland to a broad, flat-bottomed valley that is occupied by the main branch of Mill Creek. Elevations on the site range from a high of nearly 800 feet above mean sea level (MSL) in the northeast, to a low of 645 feet above MSL near the confluence of Skinner Creek and East Fork of Mill Creek. Both Skinner Creek and the East Fork of Mill Creek are small, intermittent shallow streams. Both of these streams flow to the southwest from the site toward the main branch of Mill Creek.

In general, the site is underlain by relatively thin glacial drift over inter-bedded shale and limestone of Ordovician age. The composition of the glacial drift ranges from intermixed silt, sand and gravel, to silty sandy clays with a thickness ranging from zero to over forty feet. The sand and gravel deposits comprise the hills and ridges and are encountered near the surface of the central portion of the site. The silts and clays usually occur as lenses in the sands and gravel or directly overlie bedrock.

1.3 SITE HISTORY AND BACKGROUND

The property was originally developed as a sand and gravel mining operation and was subsequently used as a landfill from 1934 to 1990. According to USEPA studies, materials deposited at the site include demolition debris, household refuse and a wide variety of chemical wastes. The waste disposal areas include a now buried former waste lagoon near the center of the site and a landfill. According to USEPA studies, the buried lagoon was used for the disposal of paint wastes, ink wastes, creosote, pesticides, and other chemical wastes. The landfill area, located north and northeast of the buried lagoon, received predominantly demolition and landscaping debris.

In 1976, the Ohio EPA (OEPA) initiated an investigation of the site. In 1982, the site was placed on the National Priority List by the USEPA based on information obtained during a limited investigation of the

site. A Phase II Remedial Investigation was conducted from 1989 to 1991 and involved further investigation of groundwater, surface water, soils and sediments. Both a Baseline Risk Assessment and Feasibility Study (FS) were completed in 1992.

The Phase II Remedial Investigation revealed that the most contaminated media at the site is the soil in the buried waste lagoon. Migration of the landfill constituents has been limited, and the Phase II Remedial Investigation concluded that there had been no off-site migration of landfill constituents via groundwater flow.

In the Record of Decision (ROD), dated June 4, 1993, the USEPA selected a remedy for the site consisting of multi-media capping of the landfill and the buried waste lagoon, and collection and treatment of the groundwater. The ROD also required an investigation to determine the feasibility for soil vapor extraction (SVE) in the granular soil adjacent to the buried lagoon.

The Remedial Design (RD) Investigation performed in 1994 was implemented to collect data required to assess the feasibility of the SVE and to design the multi-media cap and the groundwater extraction/treatment systems. The Remedial Design was submitted to USEPA on June 21, 1996 outlining the cover design and groundwater interception system design. Based on the RD investigation, the installation of an SVE system was determined to be unfeasible.

Construction of a groundwater interception system (GIS) and engineered landfill cover system began in April 2001 and was substantially completed in September 2001. The USEPA conducted the pre-final construction inspection on September 27, 2001, the final construction inspection on March 27, 2003 and the second 5-Year Review on January 22, 2004.

2.0 <u>SAMPLING METHODS</u>

This quarterly monitoring event was conducted in general accordance with the following documents shown with the date of the USEPA-approved final version:

- Operation and Maintenance Long-Term Performance Plan (O&M-LTP Plan) dated August 2003, and
- RA Health and Safety Plan, Final February 2001.

There were no deviations from these work plans.

3.0 RESULTS

3.1 GROUNDWATER LEVELS

The groundwater elevation data obtained from the monitor wells, piezometers and selected gas probes is presented on Table 1 with the corresponding potentiometric surface map provided in Appendix A. The groundwater flow direction and gradient remained relatively unchanged when compared to the previous quarterly monitoring report period. Groundwater flow direction is to the south-southeast directly toward the East Fork of Mill Creek with an average hydraulic gradient of 0.11 ft/ft. The groundwater gradient has remained relatively unchanged when compared to the average hydraulic gradient of 0.13 ft/ft documented in the Remedial Action Baseline Monitoring Report dated March 2005.

3.2 GROUNDWATER-WASTE MONITORING

Results of the piezometer groundwater levels used to monitor the groundwater levels relative to bottom of waste are provided on Table 2. Based on measured water levels, groundwater has been lowered below the waste elevation during this monitoring event at piezometers P-11 and P-12, which are the two piezometers furthest from Duck Pond. The depth to water measurement in piezometer P-11 was recorded with a smaller diameter water level indicator, as opposed to a groundwater interface probe, due to a pinching of the well casing that reduced the diameter of the piezometer. Depth to water measurements could not be recorded from piezometers P-9 and P-10 due to an obstruction or possible pinching of the well casing.

3.3 GROUNDWATER ANALYTICAL RESULTS

A summary of target compound list (TCL) and target analyte list (TAL) parameter concentrations encountered above the contract required detection limit and revised modified trigger level is provided on Table 3. A summary of the laboratory analytical results have been presented on a per well basis in Appendix B to assist in identifying temporal detection patterns. A report of each data set reduction, validation and assessment procedure conducted on an analytical-set basis in accordance with the O&M-LTP Plan quality assurance project plan (QAPP) is included in Appendix C.

In general, target compound list volatiles, semi-volatiles, pesticides and PCBs were not detected in groundwater above the CRQL.

Two of the 24 TAL parameters were detected above the CRQL. Detections of iron (present in two groundwater monitoring wells) and chromium (present in one groundwater monitoring well) were detected above the CRQL.

The concentration of total chromium in groundwater monitoring well GW-07R, detected above the CRQL, also exceeded the revised modified trigger level. Chromium was not detected in the previous quarter at this sampling location.

3.4 SURFACE WATER ANALYTICAL RESULTS

Surface water analyzed consisted of sampling surface runoff from the site and surface water directly from the East Fork of Mill Creek. A summary of TCL and TAL parameter concentrations encountered above the contract required detection limit and revised modified trigger level is provided on Table 4. A summary of surface water laboratory analytical results is presented in Appendix B. The summary tables are presented on a sample location basis. The validated laboratory analytical data is provided in Appendix C.

In general, target compound list volatiles, semi-volatiles, pesticides and PCBs were not detected in surface water above the CRQL.

Only one of the 24 TAL parameters were detected above the CRQL. A detection of chromium (present in one surface water sample location) was present above the CRQL.

The concentration of total chromium in surface water sample location SW-51, detected above the CRQL, also exceeded the revised modified trigger level. Chromium was not detected in the previous quarter at this sampling location.

SITE VICINITY MAP

GROUNDWATER ELEVATIONS

TABLE 1 **Groundwater Elevation Summary**

Skinner Landfill West Chester, Ohio

				_ [June 14, 2005			
Well Type	Location	Well Use	Ground Surface Elevation (MSL-feet)	Top of Casing Elevation (MSL-feet)	Depth to Water (feet from top of casing)	Groundwater Elevation (MSL-feet)		
	P-1	G	685.42	687.65	10.90	676.75		
	P-2	G	688.54	690.42	12.10	678.32		
	P-3R	G	691.83	693.69	25.00	668.69		
	P-4	G	700.32	702.63	6.30	696.33		
	P-5	G	708.20	710.65	14.35	696.30		
Piezometers	P-6	G	707.45	710.59	12.90	697.69		
Piezonieters	P-7	G	719.08	721.83	Dry	Dry		
	P-8	G	747.70	749.91	30.35	719.56		
	P-9	G	760.68	763.90				
	P-10	G	761.34	764.16				
	P-11	G	760.34	762.76	25.20	737.56		
	P-12	G	743.50	746.17	40.50	705.67		
	GW-06R	s	683.89	685.91	10.35	675.56		
	GW-07R	s	683.46	683.06	8.15	674.91		
	GW-24	G	693.32	695.21	19.12	676.09		
	GW-26	G	696.61	698.28	29.75	668.53		
	GW-30	G	675.63	677.62	10.14	667.48		
	GW-58	s	684.03	686.53	13.30	673.23		
Groundwater	GW-59	s	684.35	687.38	7.15	680.23		
Monitoring Wells	GW-60	s	689.12	692.38	10.90	681.48		
Montoring wens	GW-61	S	687.38	690.86	13.35	677.51		
	GW-62A	s	690.19	692.38	30.00	662.38		
	GW-62B	s	690.57	693.13	12.80	680.33		
	GW-63	S	698.87	702.50	10.75	691.75		
	GW-64	s	700.45	703.88	12.30	691.58		
	GW-65	s	703.83	706.88	16.65	690.23		
	GW-66	G	686.82	689.41	7.00	682.41		
Gas Probes	GP-6	G	772.18	774.65	15.60	759.05		
	GP-7	G	749.83	752.65	9.05	743.60		

Notes:

MSL - Mean Sea Level

G - Gauging S - Sampling and Gauging

-- No Gauging Data Available (well constricted)

GROUNDWATER/WASTE ELEVATIONS

TABLE 2

Groundwater-Waste Monitoring Summary

Skinner Landfill West Chester, Ohio

Piezometer	Depth to Waste (feet)	Bottom of Waste Elevation (MSL-feet)	Baseline Water Elevation (June 2001) (feet)	Water Elevation (September 2004) (feet)	Water Elevation (December 2004) (feet)	Water Elevation (March 2005) (feet)	Water Elevation (June 2005) (feet)
P-9	25	737	745.00	NM	741.87		
P-10	30	734	744.50		-		
P-11	17	745	744.30	733.66	Dry	737.46	737.56
P-12	35	707	713.50	705.06	706.14	706.17	705.67

Notes:

Waste elevations determined during piezometer installation on June 28 and 29, 2001.

Shaded cells indicate water level elevations below the elevation of waste.

- No gauging data available (well constricted).

NM - Not Measured (wasp nest in standpipe).

GROUNDWATER RESULTS SUMMARY

Table 3

Groundwater Summary

Skinner Landfill West Chester, Ohio Second Quarter 2005

Sample ID	VOCs	SVOCs	Dissolved Metals**	Pesticides/PCBs
GW-06R	-	-	-	
GW-07R	-	-	chromium	-
GW-58		-	<u>-</u>	- " -
GW-59	-		<u> </u>	
GW-60	-	-	-	-
GW-61	-	-	iron	
GW-62A		-	<u>.</u>	-
GW-62B	=	*	*	*
GW-63	=	- "	iron	<u>-</u>
GW-64	-	-	<u>-</u>	-
GW-65	*	*	*	*

⁻ all parameters below report limits

italic - above Contract Required Quantitation Levels (CRQL's)

bold - above trigger level

- * Insufficient sample volume.
- $\ensuremath{^{**}}$ Dissolved metals for analytes that have a corresponding trigger level.

SURFACE WATER RESULTS SUMMARY

Table 4

Surface Water Summary

Skinner Landfill West Chester, Ohio Second Quarter 2005

Sample ID	VOCs	SVOCs	Dissolved Metals**	Pesticides/PCBs
SW-50	-	-	 	-
SW-51	-	-	chromium	-
SW-52	-	-	<u> </u>	-
SWD-1	*	*	*	*
SWD-2	*	*	*	*
SWD-3	*	*	*	*

- all parameters below report limits

italic - above Contract Required Quantitation Levels (CRQL's)

bold - above trigger level

- * Insufficient sample volume.
- ** Dissolved metals for analytes that have a corresponding trigger level.

POTENTIONMETRIC SURFACE MAP

SDMS US EPA Region V

Imagery Insert Form

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

riations. ilable in monochrome. The source document pag
document is available for viewing at the Superfur
of Document(s) / Comments:
ormation. Due to confidentiality, materials with su may contact the EPA Superfund Records Mana of Document(s) / Comments:
y limitations, the document page(s) is not availab
of Document(s) / Comments:
JRFACE MAP

SUMMARY OF ANALYTICAL RESULTS

		Sampling Event (All Results Expressed in Units of µg/l)							
		1							
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³			1						
Aluminum	25.8	25.8	85.2	55.3	55.3	55.3	32.4		200
Antimony	3.7	3.7	7.7	10.6	4.1	3.9	5.4	60	60
Arsenic	2.9	2.9	5.4	5.4	26.7 J	6.1 J	3.8	20	10
Barium	294	266	45.4 J	329	179.0	196 0.2	253 0.1	1,000	200
Beryllium Cadmium	0.1	0.1	0.2	0.20 0.30	0.2	0.2	0.1	5	5
Calcium	189,000	189,000	176,000	205,000	193,000	186,000	199,000	-	5,000
Chromium	0.8	1.2	1.5	3.7	1.5	1.5	1.5	11	10
Cobalt					2.9	0.7	1.1		50
Copper	1.7	1.2	1.2	1.2	1.2	1.2	0.7	25	25
ron	14.1	22	1,360 J	9.1	1,210	9.1	10.5	7,000	100
Lead	1.5	1.5	2.4 UJ	2.4 UJ	2.4	2.4 UJ	1.4	4.2	3
Magnesium	30,500	30,000	33,100	32,100	31,300	31,700	34,000		5,000
Manganese	77.0	69.5 J	481 J	124	363	173	224		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
Nickel	1.8	1.7	3.4 J	2.2	2.5	1.1	0.4	96	5,000
Potassium	2,400	2,060	7,180 J 4.4	3,340 J 4.4 UJ	2,510 J	2,200	2,680 3.5 UJ	8,5	5,000
Selenium Silver	4.4 R 0.4	4.4 UJ 0.4	0.9	2.5	4.4 0.9	4.4 R 0.9	3.5 UJ 1.1	10	10
Sodium	21,500	- 20,700	29,000 J	20,900 J	22,000	21,000	22,800	10	5,000
l'hallium	2.6 UJ	2.6	6.3	6.3	8.1	6.3	4.1	40	10
Vanadium	0.8	1.6	1.1	3.5	6.7	11.5	11.9		50
Zinc	0.6 UJ	0.6	0.7 UJ	0.7	0.7	4.6	12.1	86	20
Inorganics - Metals and Cyanide (Total)					AND THE PERSON			the other states	7 124 114
Aluminum	17,000	9,900	4,950 J	37,200 J	2,890 J	8,510	7,510 J		
Antimony	3.7	5.5	8,2	3.9	3.9	7.6 J	11.5		
Arsenic	20.5	12.4	5,4 UJ	5.4	34.6 J	9.0 J	5.2		
Barium	568	440	103 J	821	232 J	338	397		
Beryllium	1.2	1.1	0.7	2.1	0.2	0.5	0.2		
Cadmium	0.2	1.0	1.5	0.3	0.3	0.3	0.1		
Calcium	378,000	309,000	224,000 J	576,000	217,000	234,000	263,000 J		15 / En
mium	27.0	16.9	5.3 J	58.5	6.1	11.1	9.7	1 1 1 1 1	
lt	24.1	12.3	6.6	46.5	6.0	11.9	12.5		10.00
Cyanide	52.1 3.0	39.3 1.0	12 J 3.3	97.2 J 0.7	5.0 0.5	18.7 J 0.5	17.3 J 0.6	10	10
Iron	45,400	25,300	17,300 J	90,600	9,100 J	20,900	21,900 J	10	10
Lead	46.0	23.9	9.3 J	88.1 J	3.3 J	13.6 J	14.8		
Magnesium	115,000	83,600	46,800 J	184,000	42,100 J	51,800	63,000 J		
Manganese	2,940	988	758	5,750	585	1,010	1,460 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1		
Nickel	41.2	23.4	17.2 J	80.5	8.1	15.5	0.4		
Potassium	5,050	3,970	8,320	9,100	3,320 J	4,210	4,080		
Selenium	4.4 UJ	4.4 UJ	4.4	4.4 R	6.6 J	4.4 UJ	3.5 R		
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
Sodium	22,100	21,900	28,600 J	24,300	21,900	20,400	23,700 J		
Thallium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1 UJ		
Vanadium Zinc	41.5 147 J	22.2 72.9	3.7 22.1 UJ	84.3 283 J	16.1 20.4 J	29.1 J 63.2	29.9 J 66.6	-	
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
1,1-Dichloroethane				0.34 J	1.0 U	1.0 U	1.0 U		10
1,2-Dichloropropane				0.23 J	1.0 U	1.0 U	1.0 U	5	10
Benzene				0.15 J	1.0 U	1.0 U	1.0 U	5	10
Ethylbenzene				0.14 J	1.0 U	0.11 J	1.0 U	62	10
Γoluene				0.45 J	1.0 U	0.74 J	1.0 U	1,000	10
Tetrachloroethene				0.17 J	1.0 U	1.0 U	1.0 U	5	10
Xylene (total)	Was a second			0.33 J	1.0 U	0.19 J	1.0 U	10,000	10
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Dibenz (a,h) anthracene				 			0.652 J	10	10
Indeno (1,2,3-cd) pyrene	107						0.502 J	10	10
Benzo (g,h,i) perylene	10120						1.02 J	10	10
	DDY	DDI	Dr.	prov	no.	Des			
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL	1	í

Notes

- 1) All results expressed in micrograms per liter (µg/L).

- All results expressed in micrograms per liter (µgL).
 Standard Inorganic Data Qualifiers have been used.
 Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 Bold red letters with a thick outline indicates a detection above the Trigger Level.
 BRL = Below Report Limit; reported data values have a data qualifier of U. J. or UJ
 = No Sample Available (Well Dry)
 U = Not detected at the listed reporting limit.
 B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 U = A value less than the CRQL but greater than the MDL.
 J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 CRQL = Contract Required Quantitation Limit
- 12) CRQL = Contract Required Quantitation Limit
 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.
- 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Sampling Event (All Results Expressed in Units of µg/l)	
Quarterly Results	_

		Quarterly Results							
Compound	November-03	March-04	May-04	September-05	December-04	March-05	June-05	TRIGGER LEVEL	CRQI
norganics - Metals (Dissolved) ¹³									
Aluminum	25.8	25.8	62.0	55.3	55.3	55.3	24.0		200
Antimony	3.7	3.7	3.9	3.9	3.9	3.9	6.0	60	60
Arsenic	4.5	2.9	5.4	5.4	35.8 J	5.4	3.8	20	10
Barium	131	113	119 J	118	46.7	94.7	111	1,000	200
Beryllium	0.1	0.1	0.2	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	0.9	0.3	0.3	0.3	0.1	5	5
Calcium	229,000	185,000	184,000	205,000	367,000	173,000	191,000		5,000
Chromium	0.8	1.1	1.5	3.3	1.7	2.4	32.8	11	10
Cobalt	1.4	0.7	0.9	0.6	0.6	0.6	0.6		70000
Copper	1.2	1.2	1.4	1.2	1.2	1.2	0.7	25	25
ron	3,580	32.9	41.3 J	9.1	9.1	10.5	56.1	7,000	100
Lead	1.5	1.5	2.4 UJ	2.4	2.4	2.4 UJ	1.4	4.2	3
Magnesium	33,000	26,300	28,100	29,400	52,300	26,700	29,400	7.2	5,000
Manganese	849	914 J	1,090 J	418	49.8	398	908		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
		2.2				1.5	0.1	96	40
Nickel	1.6		3.5 J	1.1	1.8			96	
Potassium	3,260	2,350	2,580 J	3,010 J	5,000 J	2,380	2,400	0.5	5,00
Selenium	4.4 R	4.4 UJ	4.4	4.4 UJ	8.5	4.4 R	3.5 UJ	8.5	5
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1	10	10
Sodium	42,200 2.6 UJ	25,200	25,500 J 8.5	32,600 J	48,200	24,900 6.3	26,600 4.1	40	5,000
Thallium	the same of the sa	2.6		6.3	6.3 U			40	
Vanadium	0.8	0.8	1.1	1.1	8.5 B	9.1	11.0	06	50
Zinc Inorganics - Metals and Cyanide	30.7 J	0.6	0.7 UJ	0.7	0.7 U	11.3	14.3	86	20
(Total)									
Aluminum	3,130 J	7,810	10,300 J	8,270 J	7,040 J	9,090	23,300 J	T	
Antimony	3.7	6.6	4.5	5.1	4.0	10.7 J	18.6		
nic	5.3	6.9	5.4 UJ	5.4	45.1 J	5.4	7.6		
m	204	484	570 J	469	319 J	405	1,120		
peryllium	0.1	0.8	0.8	0.2	0.2	0.4	1.1		
Cadmium	0.2	0.9	1.2	0.3	0.3	0.3	0.1		
Calcium	246,000	281,000	260,000 J	250,000	392,000	222,000	293,000 J		
Chromium	4.9	12.9	17.4 J	13.4	12.8	12.5	44.2		
Cobalt	4.3	7.0	9.1	6.2	5.3	6.4	17.8		
Copper	10.0	35.5	31.1 J	15.3 J	15.2	23.1 J	50.8 J		
Cyanide	9890.0	1.5	0.5	0.7	0.5	0.6	0.6	10.0	10.0
Iron		20,200	26,900 J			22,000		10:0	10.0
Lead	0.1	9.2	26,900 J 15.7 J	20,200 11.4 J	17,600 J 6.7 J	7.1 J	63,600 J 29.5		
Magnesium	41,600	54,000	54,300 J	45,900	66,900 J	42,300	73,000 J		
Manganese	969	1,590	2,020 J	1,400	570	913	2,340 J		
Mercury	10.5	0.1	0.1	0.1	0.1	0.1 UJ	0.1		_
Nickel	4.4	17.8	24 J	12.7	14.6	16.0	28.1		
Potassium		4,510				4,300			-
	3,780		5,060 J	4,770	6,590 J		5,940		
Selenium	0.4 UJ 2.6	4.4 UJ 0.4	0.9	4.4 R	12.0 J	4.4 UJ	3.5 R		
Silver	10000			0.9	0.9	0.9	1.1		
Sodium Fhallium	41,200	31,200	27,100 J	32,400	48,500	26,200	27,500 J	1	
√anadium	22.7	2.6	6.3	7.0	7.7	6.3 UJ	4.1 UJ		
Zinc	6.5 3 J	15.3 J 51.2	15.2 35.5 UJ	9.2 46.9 J	26.8	23.5 J	47.0 J		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	50.3 J BRL	59,4 BRL	146 BRL		
								1 000	
Palana			+	-	DD.	0.69 J	1.0 J	1,000	10
Semi-Volatile Organic Compounds	RDI	ppr	DDI	ppi					
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Toluene Semi-Volatile Organic Compounds (SVOCs) Diethylphthalate	BRL	BRL	BRL	BRL	BKL	BKL	0.6 J		10

Notes:

- All results expressed in micrograms per liter (μg/L).
- 2) Standard Inorganic Data Qualifiers have been used.
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ

- Use Not detected at the listed reporting limit.

 B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.

- 9) UI = A value less than the CRQL but greater than the MDL.
 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
- 12) CRQL = Contract Required Quantitation Limit
- 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

	Sampling Event (All Results Expressed in Units of μg/l)									
	Quarterly Results									
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL	
norganics - Metals (Dissolved) ¹³			Not Sampled	Not Sampled					1	
Aluminum	25.8	25.8	_		55.3	55.3	16.4		200	
Antimony	3.7	3.7	_		3.9	3.9	4.0	60	60	
Arsenic	6.0	3.1	_		17.7	5.4 J	3.8	20	10	
Barium	228	156	_	_	162.0	157	151.0	1,000	200	
Beryllium	0.1	0.1	_	_	0.2	0.2	0.1	5	5	
Cadmium	0.2	0.2	_		0.3	0.3	0.1	5	5	
Calcium	96,400	109,000	_	_	96,200	108,000	114,000		5,000	
Chromium	0.8	1.5	_	_	1.8	1.5	0.8	11	10	
Cobalt	0.4	1.3	_	-	0.6	1.1	0.6		50	
Copper	1.2	2.9			1.2	1.2	0.7	25	25	
ron	2890	209	_	_	1,290	49.4	10.5	7,000	100	
ead	1.5	1.5	-	- 110	2.4 J	2.4 UJ	1.4	4.2	3	
Magnesium	32,800	32,500	_		31,900	33,200	34,500		5,000	
Manganese	354	549			398	265	84.7		15	
Mercury	0.1	0.1	_		0.1	0.1 UJ	0.1	0.2	0.2	
Nickel	1.3	2.6			1.1	1.2	0.4	96	40	
Potassium	5,210	4,550		_	4,820	4,270	4,110		5,000	
Selenium	4.4 R	4.4 UJ			5.3 J	4.4 R	3.5 UJ	8.5	5	
Silver	0.4	0.4	_		0.9	0.9	1.1	10	10	
Sodium	34,400	32,400	-		32,900	29,700	30,600		5,000	
Thallium	2.6 UJ	2.6	_		6.3 J	6.3	4.1	40	10	
Vanadium	0.8	1.6	_		7.4	11.1	11.7		50	
Zinc	0.6 UJ	0.6		_	0.7	2.6	10.1	86	20	
Inorganics - Metals and Cyanide (Total)			_		Hara Land					
Aluminum	41,600	12,000	_		23,400	31,900	17,600 J			
Antimony	3.7	5.7	_	-	3.9	21.7 J	14.6			
Arsenic	32.9	11.5	_		60.7 J	19.6 J	6.8			
Barium	822	284			486	474	364			
m	2.9	1.0	_		1.4	1.8	0.8			
1	1.8	1.5			0.3	0.3	0.1			
Caicium	745,000	214,000	_		441,000	345,000	277,000 J			
Chromium	112	28.2	_	-	54.2 J	64.0	34.4			
Cobalt	57.2	13.4		-	27.4	32.2	16.4			
Copper	138.0	45.7			56.0	77.6 J	41.5 J	10	10	
Cyanide	3.0	0.5	_	_	0.5	0.5	0.6	10	10	
Iron Lead	129,000	32,700	_		61,800	80,500	45,400 J		-	
Lead	92,7	19.5	_		39.5 UJ	45.3 J	20.7			
Magnesium	148,000 4,200	56,000 1,300		_	88,600	86,600 1,970	73,800 J			
Manganese	0.1	0.1	_		2,430		1,300 J			
Mercury Nickel	124	32.1	_	<u> </u>	0.1 63.0	0.1 UJ 73.4	0.1		- 3 1 -	
Potassium	11,800	7,640	_	_	11,800	11,500	17.8 8,380			
Selenium	4.4 UJ	4.4 UJ		_	5.1 J	4.4 UJ	3.5 R		-	
Silver	1.6	0.4			0.9	0.9	1.1		The state of the s	
Sodium	36,900	33,500			37,200	31,500	34,700 J	100000000000000000000000000000000000000		
Thallium	2.6	4.1 J	_		6.5	6.3 J	4.1 UJ			
√anadium	74.0	23.2	_	_	63.2	59.4 J	38.0 J		THE STATE OF	
Zinc	367 J	81 J	_	_	178	224	128			
Volatile Organic Compounds (VOCs)	BRL	BRL	-	_	BRL	BRL	BRL			
Benzene					0.061 J	1.0 U	1.0 U	5	10	
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	_	_	BRL	BRL	BRL			
Pesticides / PCBs	BRL	BRL	_	_	BRL	BRL	BRL			

Notes:

- All results expressed in micrograms per liter (μg/L).

- 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 6) = No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 0) UI = A value less than the CRQL but greater than the MDL.

- 8) B = An estimated value above the method detection limit (MDL) or the instrument detection mint (IDL) but below the CRQL.

 9) UJ = A value less than the CRQL but greater than the MDL.

 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 2QL = Contract Required Quantitation Limit
 aples analyzed for Dissolved Inorganics were field filtered using a 0.45 micron, gravity flow filter.

 etailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Anne Late	Sampling Event (All Results Expressed in Units of µg/l)	
	Quarterly Results	

1.120/00				Quarterly R					
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³					THE STATE OF THE S				
Aluminum	25.8	27.2	55.3	55.3	55.3	55.3	16.4		200
Antimony	6.5	3.7	3.9	3.9	5.7	6.9	7.7	60	60
Arsenic	2.9	2.9	5.4	5.4	28.5 J	5.4	3.8	20	10
Barium	40.7	21.8	23.2	28.6	23.0	21.1	24.6	1,000	200
Beryllium	0.1	0.1	0.2	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	0.3	0.3	0.3	0.3	0.1	5	5
Calcium	261,000	239,000	209,000	238,000	217,000	236,000	240,000		5,000
Chromium	0.8	1.8	1.5	4.4	2.4	1.5	0.8	11	10
Cobalt	0.4	0.4	0.6	0.6	0.7	0.6	0.6	ENGINEER STATE	50
Copper	4.0	2.1	1.2	1.2	1.2	1.2	0.7	25	25
Iron	14.1	28.8	31	9.1	9.1	9.1	10.5	7,000	100
Lead	1.5	1.5	2.4	2.4	2.4	2.4 UJ	1.4	4.2	3
Magnesium	59,500	49,000	43,900	53,500	44,200	53,900	54,600		5,000
Manganese	27.3	4.5 J	0.6	13.6	1.3	0.6	0.1		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
Nickel	2.3	2.6	2.2	1.1	1.2	1.1	0.4	96	40
Potassium	29,800	32,800	29,200	25,200	32,500 J	19,200	23,200		5,000
Selenium	4.4 R	4.4 UJ	4.4 R	4.4 UJ	4.4	4.4 R	3.5 UJ	8.5	5
Silver	0.4	0.4	0.9	1.2	0.9	0.9	1.1	10	10
Sodium	186,000	166,000	145,000	179,000	134,000	135,000	151,000		5,000
Thallium	2.6 UJ	3.1 J	6.3 UJ	6.3	6.3	6.3	4.1	40	10
Vanadium	0.8	1.4	1.1	1.1	8.6	16.0	16.0		50
Zinc	0.6 UJ	3.1	0.7	0.7	0.7	13.3	12.5	86	20
Inorganics - Metals and Cyanide	PARTY OF THE PARTY			restaction of					
(Total)									
Aluminum	3,710	816	754	4,300 J	1,040 J	7,180	2,390 J		
Antimony	3.7	4.7	3.9	4.9	4.2	13.7 J	7.2		
Arsenic	4.3	2.9	5.4	5.4	28.2 J	5.4	4.1		
Barium	213	55	58.4	214	44.6 J	328	85.2		
lium	0.1	0.2	0.2	0.2	0.2	0.3	0.1		
ium	0.2	0.2	0.3	0.3	0.3	1.5	0.1		
Lum	281,000	243,000	234,000	276,000	211,000	275,000	238,000 J	S-102-00-0	
Chromium	19.1	5.5	3.7	22.8	6.8	28.7	30.7	Turk Water Inc.	14 K - 17 E
Cobalt	7.4	2.1	2.5	8.4	2.1	13.1	4.7		
Copper	11.9	10.1	4.1	6.5 J	2.7	18.4 J	5.0 J	CINE CON	
Cyanide	3.0	1	0.6	0.5	0.5	0.6	0.6	10	10
Iron	12,900	3,020	2,710	14,000	4,260 J	23,600	10,500 J		
Lead	10.0	1.5	4.7 J	11.7 J	2.4	8.6 J	2.4		
Magnesium	62,400	51,500	49,100	58,000	40,400	61,100	56,000 J		
Manganese	923	224	357	1,180	295	1,680	566 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1		
Nickel	20	6.7	6.3	19.0	6.6	32.7	0.4		
Potassium	31,900	32,500	32,900	28,600	33,700 J	22,000	22,500		
Selenium	4.4 UJ	4.4 UJ	4.4 UJ	4.4 R	4.4	4.4 UJ	3.5 R		
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
Sodium	180,000	162,000	152,000	184,000	127,000	143,000	148,000 J		
Thallium Vanadium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1 UJ		
Vanadium Zinc	5.9 36.3 J	2.3 7.9	1.1	1.2 34.4 J	10.6 15.0 J	25.1 J 68.0	19.5 J 36.0		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
								The state of the state of	
1,1-Dichloroethane	1.0 U	1.0 U	0.18 J	0.098 J	0.18 J	1.0 U	1.0 U	-	10
Ethylbenzene	7 1 2 3			0.016 J	1.0 U	1.0 U	1.0 U	62	10
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL	1 State 2 State	

- 1) All results expressed in micrograms per liter ($\mu g/L$).
- Standard Inorganic Data Qualifiers have been used.
 Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
- 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.

- 49 John Red reteries with a three volume induces a detection above the 1 rigger Level.

 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ

 6) = No Sample Available (Well Dry)

 7) U = Not detected at the listed reporting limit.

 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.

 9) UJ = A value less than the CRQL but greater than the MDL.

- 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified. CRQL = Contract Required Quantitation Limit
 - Samples analyzed for Dissolved Inorganics were field filtered using a 0.45 micron, gravity flow filter.
- 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

			Sampling E	vent (All Results Expr	essed in Units of µg/l)			
				Quarterly Resu	lts				
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³		Insufficient Volume		Insufficient Volume					
Aluminum	25.8	25.8	57.9	_	55.3 J	55.3	50.4		200
Antimony	3.7	5.1	3.9	_	7.4	11.0	4.0	60	60
Arsenic	2.9	2.9	5.4	_	35.4 J	5.4	4.5	20	10
Barium	28.7	27.1	37	_	85.2 J	48.7	18.7	1,000	200
Beryllium	0.1	0.2	0.2		0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	0.6		0.3	0.3	0.1	5	5
Calcium	100,000	309,000	163,000	_	298,000	299,000	137,000		5,000
Chromium	0.8	2.6	1.5		3.0	1.5	5.1	- 11	10
Cobalt	0.4	0.4	0.6		0.6	0.6	0.6	Maria Calaba	50
Copper	4.2	4	1.2		1.2	1.2	0.7	25	25
iron	14.1	14.1	26.4		9.1 J	58.5	10.5	7,000	100
Lead	1.5	1.5	2.4	_	2.4 J	2.4 UJ	1.4	4.2	3
Magnesium	20,100	88,200	28,800		50,800 J	61,600	30,100	The state of the s	5,000
Manganese	2.4	0.5 J	1.4		1.0	1.7	0.9	District Control	15
Mercury	0.1	0.1	0.1		0.1	0.1 UJ	0.1	0.2	0.2
Nickel	0.7	2.4	2.1		1.2	1.1	0.4	96	40
Potassium	6,970	6,480	6,640		13,100 J	8,350	6,810		5,000
Selenium	4.4 R	4.4 UJ	4.4 R		6.8 J	4.4 R	3.5 UJ	8.5	5
Silver	0.4	0.4	0.9	_	0.9	0.9	1.1	10	10
Sodium	201,000	46,000	46,000	<u> </u>	89,800	74,800	20,300	10	5,000
Thallium	2.6 UJ	2.6	6.3 UJ		6.3	6.3	4.1	40	10
Vanadium	0.8	0.8	1.1		9.9	16.7	11.3	40	50
Zinc	0.6 UJ	0.6	0.7		0.7 J	7.0	9.9	86	20
Inorganics - Metals and Cyanide (Total		010	017		0.73				
Aluminum	13,400 J	32,500	16,300	_	23,700	18,300	74,200 J		
Antimony	3.7	9.7	8.2	_	3.9	5.3 J	36.7		
Arsenic	11.7	17	5.4		49.9 J	5.4	3.8		
Barium	89.8	129	88.1		159	111	181		
um	0.9	2.5	1.3		1.3	1.0	4.3		
um	0.2	2.8	1.2	_	0.3	0.3	0.1		
Carcium	158,000	492,000	234,000		337,000	342,000	568,000 J		
Chromium	33.2	59.6	31.6	Selvice - Provide	44.0	33.4	106	I laveyne it	
Cobalt	16.6	36.1	19.1	_	25.3	19.2	77.6	The second	
Copper	29.3	54.5	26.9	_	25.4	25.3 J	83.7 J		
Cyanide	3.0		0.5		0.5	_		10	10
Iron	31,300	74,200	41,800		58,100	42,400	160,000 J		
Lead	28.2	40.4	26.9 J	_	35.0	20.6 J	78.7		
Magnesium	32,500	112,000	41,900		62,200 J	73,500.0	86,700 J		
Manganese	555	1,410	785	_	1,880	1,960.0	4,340 J		
Mercury	0.1	0.1	0.1	_	0.1	0.1 UJ	0.2		
Nickel	31.6	67.3	37.8	-	50.1	34.8	105		
Potassium	9,290	11,800	10,600	_	17,600 J	12,600	19,100		
Selenium	4.4 UJ	4.4 UJ	4.4 UJ	_	9.9	4.4 UJ	3.5 R		
Silver	0.4	0.4	0.9	_	0.9	0.9	1.1		
Sodium	212,000	44,600	45,000		89,000	78,600	19,500 J		
Thallium	2.6	11 J	6.3		6.3	6.3 UJ	4.1 UJ		
Vanadium	23.2	51.2	19.8	_	55.0	39.8 J	103 J		
Zinc	135 J	180	97.3		140	116	391		STATE OF THE STATE
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	_	BRL	BRL		2-44	
Benzene Control disulfide					0.52.5	1.0 J	0.083 J	5	10
Carbon disulfide Semi-Volatile Organic Compounds	-				0.53 J	1.0 U	1.0 U		10
(SVOCs) N-Nitrosodiphenylamine	BRL	BRL	BRI,	_	BRL	BRL	BRL 10.6 U		10
Pesticides / PCBs	BRL	BRL	BRL		0.954 U BRL	11.6 U BRL	10.6 U BRL		10
toucides / I CDs	DKL	DKL	DKL	_	DKL	BKL	DKL		

Notes:

- 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)

- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 6) = No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UJ = A value less than the CRQL but greater than the MDL.
 = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
- [= The sample results are rejected due to decrease in the abundance of a sample of a sample results are rejected due to decrease in the abundance of a sample of

			Sampling l	Event (All Results Ex	pressed in Units of µ	g/l)			
				Quarterly Re	esults			TRIGGER LEVEL 60 20 1,000 5 5 5 11 25 5,000 4.2 96 8.5 10 40 86	
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05		CRQL
norganics - Metals (Dissolved) ¹³									
Muminum	25.8	25.8	55.3	55.3	55.3	55.3	16.4		200
Antimony	3.7	4.5	4.5	7.5	7.5	5.7	7.6	60	60
Arsenic	7.5	2.9	5.4	5.4	31.2 J	12.9 J	3.8	20	10
Barium	83.3	39.4	45.3 J	65.0	65.6	35.2	46.3	1,000	200
Beryllium	0.1	0.1	0.2	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.3	0.9	0.3	0.3	0.3	0.1	5	5
Calcium	191,000	191,000	178,000	199,000	216,000	183,000	211,000		5,000
Chromium	0.8	1.1	1.5	3.8	1.9	1.5	0.8	11	10
Cobalt	2.0	1.4	1.4	1,3	1.6	0,9	1.4		50
Copper	1.2	8	1.2	1,2	1.2	1,2	0.7	25	25
ron	5,100	187	1,370 J	4,410	1,310	32,1	122	5,000	100
ead	1.5	1.5	2.4 UJ	2.4 UJ	2.4	2,4 UJ	1.4		3
1agnesium	35,700	29,100	34,100	40,500	41,500	33,500	45,800		5,000
Manganese	866	485	481	686	564	713	953		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
Nickel	4.0	4.2	4.7 J	4.0	3.6	2.0	0.4		40
Potassium	10,100	6,990	7,160	8,690 J	8,360 J	6,540	7,010	100000000000000000000000000000000000000	5,000
Selenium	4.4 R	4.4 UJ	4.4	4.4 UJ	4.5	4.4 R	3.5 UJ	8.5	5
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		10
Sodium	28,300	27,900	28,600	28,400 J	56,600	24,800	35,400	10	5,000
Thallium	2.6 UJ	2.6	6.3	8.2 J	6.3	6.3	4.1	40	10
Vanadium	0.8	1.2	1.1	4.4	8.8	9.3	12.9	40	50
Zinc	4.8 J	0.6	0.7 UJ	0.7	0.7	7.0	13.7	96	20
		0.6	0.7 03	0.7	0.7	7.0	15.7	00	20
Inorganics - Metals and Cyanide (Total	1								
Aluminum	1,080	452	5,090 J	7,740 J	6,330 J	4,610	5,930 J	or Latin Library	77-1
Antimony	3.7	4.8	5.2	3.9	4.3	6.2 J	10.4	T SUFFE T	
Arsenic	3.7	2.9	5.4 UJ	5.4	40.5 J	7.6 J	8.8		
Barium	91.3	44.1	108 J	155	121 J	79.7	101.0		
llium	0.1	0.2	0.6	0.2	0.2	0.2	0.2	Sale	
nium	0.2	0.3	1.2	0.3	0.3	0.3	0.1		
Calcium	190,000	187,000	217,000 J	278,000	237,000	222,000	233,000 J		
Chromium	2.1	1.9	8.1 J	15.0	12.3	8.5	9.1		
Cobalt	3.3	1.7	6.5	8.2	5.8	4.7	6.4		
Copper	4.2	22.2	12.4 J	12.6 J	8.0	9.5 J	11.6 J		
Cyanide	3.0	0.5	0.5	0.8	0.5	0.5	0.6	10	10
ron	8,640	2,430	17,500 J	26,200	16,100 J	13,500	18,200 J		
Lead	1.6	22.1	9.3 J	10.3 J	4.7 J	2.4 UJ	8.3		
Magnesium	37,500	30,000	45,200 J	59,700	45,600 J	44,500	51,700 J		THE WATER
Manganese	922	527	751 J	1,190	754	923	1,110 J		-
Mercury	0.1	0.1	0.1						
Nickel	7.6	4.3	17.2 J	0.1	0.1	0.1 UJ	0.1		
Potassium	9,430	6,950	9,300	19.3 10,900	14.8 10,400 J	10.9 8,380	0.4 8,270		
Selenium	9,430 4.4 UJ	6,950 4.4 UJ	9,300	10,900 4.4 R	10,400 J 5.2 J		8,270 3.5 R		
Silver	0.4	0.4	0.9	0.9	0.9	4.4 UJ			
Sodium	27,700	27,000	30,300 J	32,800	57,400	0.9 27,800	1.1 33,500 J		
Thallium	2.6	27,000	6.3	6.3	6.3	6.3 UJ	4.1 UJ		
/anadium	0.8	2.1	3.4	6.6	21.7	18.2 J	21.8 J		
inc	13.8 J	7.3 J	22.4 UJ	56.9 J	39.5 J	37.8	54.3		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL	1	
Carbon disulfide									**
Semi-Volatile Organic Compounds	1.0 U BRL	1.0 U BRL	1.0 U BRL	0.43 J BRL	1.0 U BRL	1.0 U BRL	1.0 U		10
	DKL	BKL	DKL,	BKL	DKL	BKL			
(SVOCs)									
(SVOCs) Bis(2-Chloroethyl)ether			0.665 J	0.893 J	10.0 U	10.4 U	0.535 J	13.6	10
(SVOCs) Bis(2-Chloroethyl)ether Bis (2-ethlyhexyl) phthalate	10.0 U	10.0 U	0.665 J 10.0 U	0.893 J 10.0 U	10.0 U 10.0 U	10.4 U 10.4 U	0.535 J 10.0 U	13.6 49	10

- All results expressed in micrograms per liter (µg/L).
 Standard Inorganic Data Qualifiers have been used.
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
- BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 = No Sample Available (Well Dry)
 U = Not detected at the listed reporting limit.

- 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 1) U = A value less than the CRQL but greater than the MDL.
 1) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 1) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 12) CRQL = Contract Required Quantitation Limit
 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.
 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Sampling Event (All Results Expressed in Units of μg/l)	
Quarterly Results	

				Quarterly Res	ults				
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
(norganics - Metals (Dissolved) ¹³									
Aluminum	25.8	25.8	55.3	55.3	55.3	1,180	36.6	The Water Bullet	200
Antimony	3.7	3.7	4.7	5.4	5,4	5.5	6.7	60	60
Arsenic	2.9	2.9	5.4	5.4	16.5 J	8.1 J	3.8	20	10
Barium	126	111	117	111	68.5	125	112	1,000	200
Beryllium	0.1	0.1	0.2	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	0.3	0.3	0.3	0.3	0.1	5	5
Calcium	123,000	122,000	122,000	132,000	88,000	133,000	133,000		5,000
Chromium	0.8	2.1	2.8	4.5	3.3	4.3	0.8	- 11	10
Cobalt	0.4	0.5	0.6	0.6	0.6	1.2	0.6	Salar Car	50
Copper	2.7	1.2	1.2	1.2	1.2	1.4	0.7	25	25
Iron	14.1	14.1	27	9.1	10.2	2,870	10.5	7,000	100
Lead	1.5	1.5	2.4	2.4	2.4	2.4 UJ	1.4	4.2	3
Magnesium	49,200	48,700	47,700	49,400	32,700	51,300	55,900		5,000
Manganese	51.4	164 J	58.2	29.2	9.7	239	65.0		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
Nickel	0.9	1.8	2.2	1.1	1.1	5.1	0.4	96	40
Potassium	10,800	11,100	10,900	10,000 J	6,680 J	9,340	8,910		5,000
Selenium	4.4 R	4.4 UJ	4.4 R	4.4 UJ	4.4	4.4 R	3.5 UJ	8.5	5
Silver	0.4	0.4	0.9	1.6	0.9	0.9	1.1	10	10
Sodium	120,000	120,000	108,000	120,000 J	77,000	111,000	126,000		5,000
Thallium	2.6 UJ	2.6	6.3 UJ	6.3	6.3	6.3	4.1	40	10
Vanadium	0.8	1.6	1,1	1.1	8.2	15.2	16.0		50
Zinc	0.9	0.6	3.7	0.7	5.2	15.2	5.5	86	20
Inorganics - Metals and Cyanide (Total)	1						- Service		The second
Aluminum	24,100	13,200	4,100	5,690 J	12,400 J	44,600	19,800 J	T 1	_
Antimony	3.7	6.1	8.0	3.9	3.9	27.5 J	15.5		
Arsenic	17.7	8.3	5.4	5.4	37.6 J	5.4	4.5		
Barium	633	361	226	237	363 J	867	464		
eryllium	1.5	1.1	0.3	0.2	0.5	2.2	0.9		
admium	1.1	1.6	0.3	0.3	0.3	9.8	0.1		
Calcium	618,000	337,000	231,000	200,000	239,000	886,000	274,000 J	I RESIDENCE	
Chromium	49.5	29.6	10.7	17.8	33.9	73.4	42.5		
Cobalt	33.5	15.6	5.4	6.2	13.9	51.5	20.5		
Copper	72.8	42.7	8.8	9.6 J	25.1	86.3 J	40.8 J		
Cyanide	3.0	1.0	0.5	0.6	0.5	_	0.6	10.0	10.0
Iron	60,800	35,000	9,710	14,200	31,900 J	99,000	48,000 J		
Lead	72.8	39.5	12 J	16.8 J	23.9 Ј	62 J	32.3		
Magnesium	137,000	88,000	57,500	57,400	68,800 J	107,000	79,000 J		
Manganese	3,380	1,460	746	608	1,030	5,270	1,430 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1		
Nickel	64.3	35.4	13.1	12.3	35.1	101	15.8		
Potassium	15,100	13,900	12,100	12,000	13,800 J	18,700	13,200		
Selenium	4.4 UJ	4.4 UJ	4.4 UJ	4.4 R	8.1 J	4.4 UJ	3.5 R		
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
Sodium	121,000	123,000	108,000	121,000	118,000	123,000	122,000 J		
Thallium	2.6	6.9 J	6.3	6.3	6.3	6.3 UJ	4.1 UJ		
Vanadium	40.5	23.0	1.1	1.9	37.1	72.9 J	42.8 J		
Zinc	181 J	101	34.7	42.9 J	97.8 J	324	150.0		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Benzene				0.035 J	1.0 U	1.0 U	1.0 U	5	10
Ethylbenzene				0.019 J	1.0 U	1.0 U	1.0 U	62	10
Xylene (total)				0.039 J	1.0 U	1.0 U	1.0 U	10,000	10
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
				1000000		1,555,555			

Notes:

- 1) All results expressed in micrograms per liter (μg/L).
- 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)

- | Solid Control of the Control of t
- 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.

 9) UJ = A value less than the CRQL but greater than the MDL.

 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit

- 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

)			Sampling E	vent (All Results E	xpressed in Units of μ	ι g/l)			
				Quarterly F	Results				
Compound	November-03	March-05	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³	Well is Dry	Well is Dry	Insufficient Volume	Well is Dry	Insufficient Volume	Insufficient Volume	Well is Dry		
Inorganics - Metals and Cyanide (Total)	-	_	-	_	-	-		La constant	
Volatile Organic Compounds (VOCs)	_	-	BRL		BRL	BRL	_	TENEDICAL SACE	
1,1-Dichloroethane			1.9		0,47 J	0.26 J			10
Chlorobenzene			0.29 J		1.0 U	1.0 U		26	10
Trichlorothene			0.11 J		1.0 U	1.0 U		5	10
Xylene			0.4 J		1.0 U	1.0 U		10,000	10
Benzene			6.0		1.0 U	1.0 U		5	10
Semi-Volatile Organic Compounds (SVOCs)	-	_	_		BRL	-	-		
Bis (2-Chloroethyl) ether					11.8 U		110000000000000000000000000000000000000	13.6	10
Pesticides / PCBs	541 LB (S)	_				_		MANUFACTURE OF THE PARTY OF THE	

- Notes:

 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J. or UJ
 6) = No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UI = A value less than the CRQL but greater than the MDL.
 10) J = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 12) CRQL = Contract Required Quantitation Limit
 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.
 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

			Sampling Ev	ent (All Results Expr	essed in Units of µg/l)		1	
				Quarterly Resu	lts			1	
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³	A 201				137000				
Aluminum	25.8	25.8	82.4	55.3	55.3	55.3	31.7		200
Antimony	3.7	3.8	11.3	5.7	6.2	7.8	6.4	60	60
Arsenic	5.4	2.9	5.4	5.4	30.4 J	14.8 J	3.8	20	10
Barium	68.6	20.1	29.9 J	50.6	41.3	31.7	31.0	1,000	200
Beryllium	0.1	0.2	0.5	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	1.3	0.3	0.3	0.3	0.1	5	5
Calcium	278,000	295,000	287,000	292,000	252,000	286,000	245,000		5,000
Chromium	0.8	1.8	1.5	4.7	3.2	1.5	0.8	11	10
Cobalt	4.1	1.1	3.6	2.9	2.6	2.4	2.1		50
Copper	1.2	2	1.2	1.2	1.2	1.2	0.7	25	25
Iron	1,150	21.4	620 J	1,150	1,220	655	1,840	7,000	100
Lead	1.5	1.5	2.4 UJ	2.4	2.4	2.4 UJ	1.4	4.2	3
Magnesium	61,000	67,000	67,400	63,300	57,900	69,600	56,800		5,000
Manganese	2,600	271 J 0.1	1,840 J 0.1	2,610	1,970	1,530 0.1 UJ	0.1	0.2	0.2
Mercury	6.9	3.2				1.6	0.1	96	40
Nickel			8.8 J	4.0	3.8			90	5,000
Potassium Selenium	11,600 4.4 R	5,210 4.4 UJ	7,800 J 4.4	9,090 J 4.4 UJ	8,450 J 6.8	5,920	7,300 3.5 J	8.5	5,000
Silver	0.4	0.4	0.9	0.9	0.8	0.9	1.1	10	10
Sodium	72,100	46,100	75,100 J	99,800 J	50,700	44,700	66,300	10	5,000
Thallium	2.6 UJ	4.6	6.3	6.3	6.3	6.3	4.1	40	10
Vanadium	0.8	0.8	1.1	1.1	10.9	16.5	14.7		50
Zinc	3.7 J	0.6	0.7 UJ	0.7	0.7	8.3	10.2	86	20
Inorganics - Metals and Cyanide	WE THE		1 1 1 1 1 1 1	STATE OF THE STATE OF					
(Total)							T	- 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	37.32
Aluminum	10,500	26,600	44,700 J	37,200 J	30,700 J	62,600	99,900 J		
Antimony	9.3	5.7 17.1	13.6	3.9	3.9	30.1 J	53.5		
Arsenic Barium	147	186	9.7 J 334 J	5.4 279	74.0 J 244 J	5.4 393	3.8 617		
Beryllium	0.6	2.1	3.4	1.4	1.7	3.5	5.3	-	
Cadmium	0.2	2.5	3.9	0.3	0.3	0.3	0.1	STAY TO	
Calcium	465,000	465,000	659,000 J	569,000	752,000	702,000	922,000 J		
Chromium	13.7	38.2	66.8 J	52.0	41.9	67.9	120		NOT THE
Cobalt	17.5	28.3	56.1	41.1	38.6	60.7	99.3	(2010)	
Copper	17.4	69.2	104 J	64.0 J	43.0	124 J	187 J		
Cyanide	3.0	0.5	1.2	0.7	0.5	0.5 U	0.6	10	10
Iron	25,800	63,200	112,000 J	84,700	69,800 J	141,000	223,000 J		
Lead	23.4	41	76.4 J	57.4 J	46.6 J	85.6 J	140		
Magnesium	96,100	111,000	148,000 J	121,000	106,000 J	157,000	184,000 J		
Manganese	4,090	2,570	5,580 J	5,250	6,160	5,660	8,490 J		100 L
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 J	0.2		TARTE INT.
Nickel	31	58.1	114 J	83.3	68.7	119	171		
Potassium	31,500	9,320	15,800 J	15,500	16,100 J	15,200	22,000		The Table
Selenium	4.4 UJ	4.4 UJ	7.2	4.4 R	12.3 J	17.2 J	3.5 R	-	
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
Sodium	73,600	45,000	81,700 J	100,000	53,100	45,800	71,100 J		
Thallium	2.6	8.5 J	6.3	6.3	6.3	6.3 UJ	4.1 UJ		
Vanadium Zinc	17.8 66.3 I	43 176 I	69.3 292 I	58.7	74.1	90.7 J	1.0 J		
Volatile Organic Compounds (VOCs)	0015	1703	2,22,7	243 J	199 J	403	637		
	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Acetone	5.0 U	5.0 R	5.0 R	5.0 R	5.0 R	5.0 R	5.0 R	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
Benzene Carbon disulfide	1077	1011	10.17	0.027	1.0 U	1.0 U	0.13 J	5	10
Ethylbenzene	1.0 U	1.0 U	1.0 U	0.075 J 0.022 J	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	62	10
Xylene (total)				0.022 J	1.0 U	1.0 U	1.0 U	10,000	10
Semi-Volatile Organic Compounds	BRL	BRL	BRL	BRL	BRL	BRL	BRL	10,000	10
(SVOCs)								100	
Di-n-butylphthalate Butylbenzylphthalate		0.61 J	0.692 J 10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10	10
	ner.			10.0 U	10.0 U	0.771 J	1.07 J	10	10
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL		

- Notes:

 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J., or UJ
 6) No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UJ = A value less than the CRQL but greater than the MDL.
 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 12) CRQL = Contract Required Quantitation Limit
 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.
 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Sampling Event (All Results Expressed in Units of µg/l)	
Quarterly Results	

Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³									
Muminum	25.8	25.8	55.3	55.3	55.3	55.3	23.4		200
antimony	3.7	3.7	6.9	7.1	5.9	3.9	5.8	60	60
arsenic	2.9	2.9	5.4	5.4	23.6 J	5.4	3.8	20	10
Barium	44.6	28.3	29.3	26.6	28.3	29.6	32.1	1,000	200
Beryllium	0.1	0.1	0.2	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	0.3	0.3	0.3	0.3	0.1	5	5
Calcium	185,000	176,000	170,000	184,000	173,000	182,000	181,000		5,000
Chromium	0.8	1.7	3.5	6.0	2.6	1.5	0.8	11	10
Cobalt	0.5	1.8	1.2	0.9	1.1	0.6	0.6		50
Copper	3.4	1.2	2.2	1.2	1.2	1.2	0.7	25	25
ron	14	14	35.5	9.1	9.1	9.1	10.5	7,000	100
ead	1.5	1.5	2.4	2.4	2.4	2.4 UJ	1.4	4.2	3
fagnesium	61,800	56,700	55,100	59,600	58,000	59,200	57,300	4.2	5,000
fanganese	292	1,170 J	2,270	100	830	863	115		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1	0.2	0.2
lickel	5.2	7.8	10.7	2.8	9.4	5.1	0.4	96	40
otassium	12,300	12,900	17,500			10,200	10,100	90	5,000
THE RESIDENCE OF THE PARTY OF T				20,400 J	18,000 J			0.5	
elenium	4.4 R 0.4	4.4 UJ 0.4	4.4 R 0.9	4.4 UJ	4.4	4.4 R	3.5 UJ	8.5	5 10
ilver				1.1	0.9	0.9	1.1	10	
odium	67,600	53,900	61,400	64,400 J	56,200	45,000	46,300		5,000
hallium	2.6 UJ	2.6	6.3 UJ	6.3	6.3	6.3	4.1	40	10
Vanadium	0.8	0.8	1.1	1.1	9.6	13.4	15.8		50
inc	2.6 J	0.6	0.7	0.7	0.7	5.1	7.5	86	20
norganics - Metals and Cyanide Total)									
Aluminum	18,700 J	3,080	3,440	14,600 J	15,100 J	15,800	66,200 J	T T	
Antimony	3.7	4.9	4.8	3.9	3.9	12.0 J	33.4		
Arsenic	10.8	2.9	5.4			5.4			
	95.9	37.1		5.4	36.4 J		3.8	1	
arium	1.0	0.3	36.6	59.8	68.7 J	66.6	174		
Seryllium Cadmium	0.2	0.3	0.5	0.3	0.8	0.8	3.7 0.1		
		213,000	213,000		0.3				
Calcium	311,000			224,000	245,000	249,000	441,000 J		
Chromium	29.4	7	2.8	24.3	28.7	22.7	93.8	-	
Cobalt	23.1	5.4	6.3	13.6	17.2	18.3	63.9		
Copper	16.3	11.3	7.4	14.9 J	17.7	18.2 J	66.4 J		
Cyanide	3.0	1.3	0.5	1.2	0.5	0.5	0.6	10	10
ron	42,900	7,520	8,940	34,500	38,600 J	38,200	150,000 J		
ead	20.0	1.5	6.2 J	14.4 J	15.1 J	11.0 J	58.9		
Magnesium	77,300	66,000	56,200	67,300	74,100 J	71,100	105,000 J		
fanganese	2,390	1,650	2,840	1,460	2,530	2,550	4,290 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1 UJ	0.1		
lickel	46.0	16.4	20.3	32.3	42.9	36.3	102		
otassium	14,700	15,000	18,400	23,500	21,200 J	14,500	21,000		
elenium	4.4 UJ	4.4 UJ	4.4 UJ	4.4 R	5.1 J	4.4 UJ	3.5 R	ALL WALL	
ilver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
odium	68,300	59,800	58,200	63,100	56,300	49,600	46,300 J		
hallium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1 UJ		EU. LIE
anadium	27.3	5.3	1.1	16.0	40.8	32.3 J	89.3 J		100
Zinc	114 J	13.6 J	19.1	70.3 J	83.1 J	82.4	337		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
	THE COLUMN	BRL	BRL	BRL	BRL	BRL	BRL		
	BRL	DKL	DICE	Ditto					
Semi-Volatile Organic Compounds SVOCs) Bis (2-ethlyhexyl) phthalate	10.0 U	10.0	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	49	10

Notes:

- 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
- Helow snading indicate a detection above the Contract Required Quantitation Limit.
 Bold red letters with a thick outline indicates a detection above the Trigger Level.
 BRL = Below Report Limit; reported data values have a data qualifier of U. J., or UJ.
 = No Sample Available (Well Dry)
 U = Not detected at the listed reporting limit.

- 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UJ = A value less than the CRQL but greater than the MDL.

- 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit

- 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Sampling Event (All Results Expressed in Units of µg/l) **Quarterly Results** TRIGGER CRQL September-04 December-04 March-05 June-05 Compound November-03 March-04 May-04 Well is Dry Insufficient Volume Insufficient Volume Insufficient Volume Well is Dry Insufficient Volume Well is Dry Inorganics - Metals (Dissolved)¹³ Antimony 60 Arsenic 10 200 Barium Beryllium Cadmium Chromium 10 Copper 100 Lead Mercury Nickel 40 Selenium Silver 10 Thallium 10 Zinc Inorganics - Metals and Cyanide (Total) Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Cyanide ron ead Mercury Nickel Selenium Silver Thallium BRL BRL Volatile Organic Compounds (VOCs) BRL BRL Semi-Volatile Organic Compounds BRI BRI (SVOCs) 25 10 4-Nitrophenol 10.0 U Bis (2-ethlyhexyl) phthalate 10.0 U Pesticides / PCBs

- All results expressed in micrograms per liter (μg/L).
 Standard Inorganic Data Qualifiers have been used.

- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL) 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
- BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 = No Sample Available (Well Dry)
 U = Not detected at the listed reporting limit.

- 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a 0.45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Creek Surface Water Sample Location SW-50

1			Sampling Ev	vent (All Results Ex	pressed in Units of p			7	
				Quarterly Re					
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³	MARKET								
Aluminum	25.8	25.8	74.3	55.3	55.3	55.3	25.2	THE SERVER OF	200
Antimony	3.7	3.7	4.7	9.9	3.9	5.9	4.0	60	60
Arsenic	2.9	2.9	5.4	5.4	13.1 J	5.4	6.8	20	10
Barium	40.0	35.8	50.9	56.3	38.4	40.2	53.1	1,000	200
Beryllium	0.1	0.1	0.3	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.1	1.2	0.3	0.3	0.3	0.1	5	5
Calcium	84,100	103,000	92,300	95,700	10,900	93,500	89,000		5,000
Chromium	0.8	1.6	1.5	3.5	3.8 J	1.5	5.4	- 11	10
Cobalt	0.5	0.4	0.6	0.6	0.6	0.6	0.6		50
Copper	4.4	4.3	1.4	1.2	1.2	1.2	0.7	25	25
ron	14.1	14.1	36.5	9.1	9.1	9.1	10.5	7,000	100
	1.5	1.5	2.4	2.4 UJ	2.4 UJ	2.4 UJ	1.4 UJ	4.2	3
Lead								4.2	5,000
Magnesium	23,400 3.8	29,700 30.0 J	28,600	28,500 27.1	30,500	30,900 0.9	28,000 7.4 J		15
Manganese						0.9	0.1	0.2	0.2
Mercury	0.1	0.1	0.1	0.1	0.1		The second laboratory and the second	0.2	
Nickel	0.7	1	2.8	1.1	1.1	1.1	0.4 UJ	96	40
Potassium	3,840	2,980	3,160	4,340	2,180	1,870	3,460		5,000
Selenium	4.4 R	4.4 R	4.4 R	4.4 R	7.9 J	4.4 R	3.5 R	8.5	5
Silver	0.4	0.4	0.9	1.3	1.0	0.9	1.1	10	10
Sodium	32,100	59,200	38,700	49,200 J	45,800	90,000	53,000		5,000
Γhallium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1	40	10
Vanadium	0.8	2.2	1.1	4.0	7.8	9.5	11.5		50
Zinc	0.6 UJ	0.6	0.7 UJ	0.7	0.7	3.7	8.3	86	20
Inorganics - Metals and Cyanide			- 11	To BE VIEW SALE O' XI	97 -				
(Total)									
Aluminum	25.8	62,300 J	100	55.3	55.3	55.3	46.2	100	
Antimony	3.7	7.3 J	3.9	3.9	3.9	3.9	4.0		
Arsenic	3.4	50.7 J	5.4	5.4	18.2	5.4	7.2		
Barium	41.3	499 J	53	57.6	39.1	40,1	50.5		
Beryllium	0.1	4.9	0.2	0.2	0.2	0.2	0.1		
Cadmium	0.2	5	0.9	0.3	0.3	0.3	0.1		
Calcium	86,400	427,000 J	93,500	93,400	106,000	92,900	85,200	No. of the last	
Chromium	0.8	72.6 J	1.5	2.9	2.2	1.5	29.8	P. Politic Chair	
Cobalt	0.4	59.7	0.6	0.6	0.6	0.6	0.6	Section Company	
Copper	4.4	131 J	1.2	1.2	1.2	1,2	1.4		
Cyanide	3.0	0.8	0.5	0.5	0.5	0.6	0.6	10	10
Iron	69.2	124,000 J	102	9.1	34.2	15.0	132.0		1, 1997
Lead	1.5	122 Ј	2.4	2.4	2.4 UJ	2.4 UJ	1.4 UJ		
Magnesium	23,900	80,300	30,200	26,800	30,600	30,200	26,500		
Manganese	5.8	5,690	8.1	43.3	4.5	1.2	10.4 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Nickel	0.7	116 J	1.1	1.1	1.1	1.1	0.4 UJ		130 173
Potassium	3,990	12,200	3,230	3,910	2,150	1,760	3,310		PYP= 1/2/17
Selenium	4.4 R	4.4 R	4.4	4.4 R	4.4 UJ	4.4 R	3.5 R		LOIS NO.
Silver	0.4	0.4	0.9	0.9	0.9	0.9	1.1		
Sodium	33,000	60,200	40,300	48,100	44,600	89,000	51,200	The state of the s	
l'hallium	2.6	2.6	6.3	6.3	7.4 J	6.3	4.1	THE PERSON NAMED IN	
Vanadium	0.8	105	1.1	1.1	6.3	9.7	11.8		100000
Zinc	1.3 J	490 J	0.7 UJ	0.7	0.7	1.7	7.1 J		No of the last
Volatile Organic Compounds (VOCs)	BRL.	BRL	BRL	BRL	BRL	BRL	BRL		12 17 13
Acetone						2.2 R	5.0 U		10
,2,4-Trichlorobenzene				0.026 J	1.0 U	1.0 U	1.0 U	77	10
Chloroform				0.019 J	1.0 U	1.0 U	0.14 J	79	10
Carbon Disulfide	Seme				0.53 J	1.0 U	1.0 U	4-563000000000000000000000000000000000000	
Semi-Volatile Organic Compounds SVOCs)	BRL	10.0 U	BRL	BRL	BRL	BRL	BRL		
Fluoranthene		0.84 Ј	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10	10
Phenanthrene		0.84 J 0.79 J	10.0 U	10.0 U	10.0 U	10.0 U		10	10
Pyrene		0.79 J 0.67 J	10.0 U	10.0 U	10.0 U		10.0 U 10.0 U	10	10
Diethylphthalate	2.17 J	10.0 U				10.0 U			
лонуринавае			10.0 U	10.0 U	10.0 U	10.0 U	10.0 U		10
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL		

- Notes:

 1) All results expressed in micrograms per liter (µg/L).

 2) Standard Inorganic Data Qualifiers have been used.

 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)

 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.

 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ

 6) = No Sample Available (Well Dry)

 7) U = Not detected at the listed reporting limit.

 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.

 - 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.

 9) UI = A value less than the CRQL but greater than the MDL.

 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit

 13) Samples analyzed for <u>Dissolved Inorganics</u> were field filtered using a .45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Creek Surface Water Sample Location SW-51

			Sampling Even	t (All Results Expr	essed in Units of p	ıg/l)			
				Quarterly Resu	ılts				
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³		·							
Aluminum	25.8	25.8	89.6	55.3	55.3	55.3	18.1		200
Antimony	3.7	3.7	3.9	3.9	3.9	3.9	4.0	60	60
Arsenic	3.2	2.9	5.4	7.7	12.1 J	5.4	8.7	20	10
Barium	42.2	35.8	46.2	51.0	39.1	41	48.6	1,000	200
Beryllium	0.1	0.1	0.3	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.1	1.2	0.3	0.3	0.3	0.1	5	5
Calcium	88,800	106,000	89,600	89,300	110,000	95,500	94,700		5,000
Chromium	0.8	1.6	1.5	3.1	1.5 J	1.5	12.7	11	10
Cobalt	0.4	0.4	0.6	0.6	0.6	0.6	0.6		50
Copper	5.1	4.3	1.2	1.2	1.2	1.2	0.7	25	25
Iron	14.1	14.1	41.5	9.1	9.1	9.1	35.3	7,000	100
Lead	1.5	1.5	2.4	2.4	2.4 UJ	2.4 UJ	1.4 UJ	4.2	3
Magnesium	24,700	31,500	29,200	29,300	32,000	31,500	29,400		5,000
Manganese	4.6	29.9 J	4.3	2.6	5.6	1.3	4.8 J		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Nickel	0.7	1.0	2.5	1.1	1.1	1,1	0.4 UJ	96	40
Potassium	3,910	2,160	3,010	3,960	2,160	1,800	3,060		5,000
Selenium	4.4 R	4.4 R	4.4 R	4.4 R	4.4 UJ	4.4 R	3.5 R	8.5	5
Silver	0.4	0.4	0.9	1.2	0.9	0,9	1.1	10	10
Sodium	34,000	60,200	41,100	49,200 J	46,700	102,000	53,700		5,000
Thallium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1	40	10
Vanadium	0.8	2.4	1.1	1.1	7.0	9.5	13.2		50
Zinc	0.6 UJ	0.6	0.7 UJ	0.7	0.7	2.5	9.3	86	20
Inorganics - Metals and Cyanide									
(Total)	250	0.050		1					
Aluminum	25,8	9,250 J	55.3	55.3	55.3	55.3	43.6	-	
Antimony	3.7	7.3 J	4.6	6.7	3.9	3,9	4.0		
Arsenic	2.9	50.7 J	5.4	5.4	19.4	5.4	9.1		
Barium	42.6	499 J	48.9	50.7	39.7	40.0	50.4		
Beryllium	0.1	4.9	0.2	0.2	0.2	0.2	0.1		
Cadmium	0.2	5	0.7	0.3	0.3	0.3	0.1	100000000000000000000000000000000000000	i cu ca ca
Calcium	86,700	153,000 J	89,900	89,400	110,000	90,500	95,300		
Chromium	0.8	72.6 J	1.5	2.6	1.7	1.5	7.6		
Cobalt Copper	0.4 3.2	7.8 131 J	0.6	0.6	0.6	0.6 1.2	0.6		
Cyanide	3.0	0.8	0.5	0.5	0.5	0.6	0.7	10	10
Iron	83.8	124000 J	63.6	82.8	39.0	28.6	27.9 U	10	10
Lead	1.5	122 J	2.4	2.4	2.4 UJ	2.4 UJ	1.4 UJ		
Magnesium	23,900	38,900 J	26,900	27,300	32,500	29,800	30,600		
Manganese	6.5	685 J	7.1	12.2	6.7	2.4	5.4 J		
Mercury	0.1	0.1	0.1	0.1	0.100	0.1	0.1		
Nickel	0.7	116 J	1.3	1.1	1.100	1,1	0.4 UJ		
Potassium	3,820	4,470	2,870	3,890	2,130	1,760.0	3,080		
Selenium	4.4 R	4.4 R	4.4	4.4 R	4.6 J	4.4 R	3.5 R		
Silver	0.4	0.4	0.9	1.1	0.9	0.9	1.1	10 7 4 3 6	
Sodium	32,800	61,800	40,900	49,400	44,900	100,000	56,100		
Thallium	2.6	2.6	6.3	6.3	6.3 UJ	6.3	4.1	1001	
Vanadium	0.8	18.7 J	1.1	1.1	6.8	9.2	12.9		
Zinc	0.6 UJ	490 J	0.7 UJ	0.7	0.7	2.4	4.8 J	1000	
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Acetone	ATTACH TO THE				5.0 R	5.0 R	5.0 R	7/25/11/11	
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		10/22 C PROF
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL		

- 1) All results expressed in micrograms per liter ($\mu g/L$). 2) Standard Inorganic Data Qualifiers have been used.
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
- 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ

- 6) = No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
- 9) UJ = A value less than the CRQL but greater than the MDL. 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
- 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit

 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a .45 micron, gravity flow filter.

- 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Creek Surface Water Sample Location SW-52

Sampling Event (All Results Expressed in Units of $\mu g/l$)

	Quarterly Results]	
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³	15.7				4.40-71				
Aluminum	25.8	25.8	81.9	55.3	55.3	55.3	30.0	TOTAL SECTION	200
Antimony	3.7	3.7	5.5	8.8	3.9	3.9	4.0	60	60
Arsenic	2.9	2.9	5.4	5.4	20.1 J	10.0 J	3.8	20	10
Barium	40.7	36.7	50.7	54.3	40.4	42.2	48.2	1,000	200
Beryllium	0.1	0.1	0.3	0.2	0.2	0.2	0.1	5	5
Cadmium	0.2	0.2	1.1	0.3	0.3	0.3	0.1	5	5
Calcium	86,000	107,000	92,700	96,400	112,000	97,600	94,500		5,000
Chromium	0.8	1.7	1.5	3.0	1.6 J	1.5	0.8	11	10
Cobalt	0.4	0.4	0.6	0.6	0.6	0.6	0.6	53455342556	50
Copper	3.7	3	1.5	1.2	1.2	1.2	0.7	25	25
Iron	14.1	14.1	52.3	9.1	9.1	9.1	10.5	7,000	100
Lead	1.5	1.5	2.4 UJ	2.4	2.4 UJ	2.4 UJ	1.4 UJ	4.2	3
Magnesium	23,500	30,700	29,200	27,300	32,100	31,500	26,100	100000000000000000000000000000000000000	5,000
Manganese	5.0	1.5 J	5.1	24.0	5.0	1.3	3.9 J		15
Mercury	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Nickel	0.7	2.4	2.1	1.1	1.1	1.1	0.4 UJ	96	40
Potassium	3,720	1,900	3,260	3,600	2,100	1,660	3,510	70	5,000
Selenium	3,720 4.4 R	1,900 4.4 R	3,200 4.4 R	3,600 4.4 R	4.4 UJ	4.4 R	3,510 3.5 R	8.5	5
Silver	0.4	0.4	0.9	1.5	0.9	0.9	1.1	10	10
Sodium	32,900	61,400	39,400	49,600 J	49,700	88,900	54,900	10	5,000
Thallium	2.6	2.6	6.3	6.3	6.3	6.3 UJ	4.1	40	10
Vanadium	0.8	1.9	1.1	1.1	8.0	9.8	10.9	40	50
Zinc		3.4		0.7	The second secon		8.9	86	20
	1.5 J	3.4	0.7 UJ	0.7	0.7	3.6	8.9	86	20
Inorganics - Metals and Cyanide (Total)									
Aluminum	25.8	26.8 J	100	55.3	55.3	55.3	97.2		
					The second secon	The same of the sa			
Antimony	3.7	3.7 UJ	3.9	3.9	4.6	3.9	4.0	1	
Arsenic	2.9	11.1 J	5,4	5.4	20.1	9.8 J	3.9	-	
Barium	41.2	112 J	51.6	53.3	42.3	39.9	49.5		
Beryllium	0.1	0.7	0.2	0.2	0.2	0.2	0.1		
Cadmium	0.2	0.5	1.1	0.3	0.3	0.3	0.1		
Calcium	84,800	108,000 J	98,900	98,000	10,900	90,100	89,800		
Chromium	0.8	12.7 J	1.5	3.0	1.9	1.5	5.1		
Cobalt	0.4	0.5	0.6	0.6	0.6	0.6	0.6		
Copper	3.3	22 J	1.2	1.2	1.2	1.2	0.7		
Cyanide	3.0	0.6	0.5	0.5	0.5	0.6	0.6	10	10
Iron	79.6	17800 J	81.7	88.8	55.9	24.2	38.3 U		
Lead	1.5	17.3 J	2.4	2.4	2.4 UJ	2.4 UJ	1.4 UJ		
Mangesium	23,300	31,100 J	29,700	26,200	31,100	28,700	25,600		
Manganese	6.8	3.2 J	9.8	28.1	7.3	1.5	7.6 J		
Mercury	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Nickel	0.7	16.4 J	1.4	1.1	1.1	1.1	0.4 UJ		
Potassium	3,710	1,900	2,940	3,700	2,210	1,580	3,400		
Selenium	4.4 R	4.4 R	4.4	4.4 R	4.4 UJ	4.4 R	3.5 R		F1-11
Silver	0.4	0.4	0.9	1.2	0.9	0.9	1.1		
Sodium	32,800	61,200	40,000	51,100	50,300	85,600	52,800		11978 E
Thallium	2.6	2.6	10.2 J	6.3	6.3 UJ	6.3	4.1		
Vanadium	0.8	2.0 2.2 J				9.9			
Vanadium Zinc	0.8 0.6 UJ	52.9 J	1.1 0.7 UJ	1.1 0.7	6.9	0.7	10.9		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	BRL	0.7 BRL	BRL	5.6 BRL		
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	BRL	BRL	BRL	BRL		
Pesticides / PCBs	BRL	BRL	BRL	BRL	BRL	BRL	BRL		

Notes:

- 1) All results expressed in micrograms per liter (µg/L).
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
- 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 6) = No Sample Available (Well Dry)
 7) U = Not detected at the listed reporting limit.

- 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UJ = A value less than the CRQL but greater than the MDL.
 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

- 11) R = The sample was positively identified, the associated intifiercal value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit

 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a .45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Outfall Surface Water Run Off Location SWD-1

			Sam	pling Event (All Result	s Expressed in Units of µ	ıg/l)			
				Quarter	ly Results				
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³	Location is Dry	Location is Dry	Location is Dry	Location is Dry	Location is Dry	Location is Dry	Location is Dry		
Antimony		_		- 2000				60	60
Arsenic	_		_		-	_	_	10	10
Barium	_	_						1,000	200
Beryllium	_	_	_		_			5	5
Cadmium	_				_		_	5	5
Chromium	_	_	_		_	_	_	11	10
Copper	_			- -			-	25	25
Iron	-		-	_		_	-	5,000	100
Lead								4.2	0.2
Mercury	_		_		_			0.2	
Nickel	_	_		_	S(38.55 -		_	96	40
Selenium	T				_	_	_	5	5
Silver	_		_	_	_			10	10
Thallium	_							40	10
Zinc	_			_	_	_	- 100	86	20
Inorganics - Metals and Cyanide (Total)									
Antimony	_				_		_		
Arsenic	_			_		_	_		
Barium							_		
Beryllium		_							
Cadmium									
Chromium	_								
Copper					_				
Cyanide		_	_		_		_	10	10
Iron	7.7	_	_	_	_	_	_		
Lead	_	_	_			_	_		
Mercury			_		_				
Nickel	_	_	_	_	_	_	_		
Selenium		_	_	_	_	_	_		
Silver									
Thallium				_				70000	
Zinc	_							11.00	
Volatile Organic Compounds (VOCs)	_	_	_	_	_	_	Service Value of Contract		
Semi-Volatile Organic Compounds (SVOCs)	_	_	_	_	_	_	_		
Pesticides / PCBs	_	_	_	-		_			

- lotes:

 1) All results expressed in micrograms per liter (µg/L).
 2) Standard Inorganic Data Qualifiers have been used.
 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL. = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
 6) = No Sample Available (Location is Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 9) UJ = A value less than the CRQL but greater than the MDL.
 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 12) CRQL = Contract Required Quantitation Limit
 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a .45 micron, gravity flow filter.
 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Outfall Surface Water Run Off Location SWD-2

		Sar	mpling Event (A	ll Results Expres	sed in Units of μ	g/l)			
	Quarterly Results								
Compound	November-03	March-04	May-05	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
norganics - Metals (Dissolved) ¹³	Location is Dry	Location is Dry	Location is Dry	Location is Dry		Location is Dry	Location is Dry		
luminum	_	_			55.3	_	_		200
ntimony	_	_	_	_	3.9	_	_	60	60
arsenic	_	_	_	_	37.4	_		20	10
Barium	_	_	_		9.5	_	_ 3/8	1,000	200
Beryllium	_	_	_	_	0.2	_		5	5
Cadmium	_	-	_		0.3	_	_	5	5
Calcium	The state of the s	_	_		202,000 J				5,000
Chromium		_	_	_	2.8	_	-	11	10
Cobalt	_	_	_	_	0.6	_	_		50
Copper	_	_	_	_	1.2	_		25	25
ron	_	_	_	_	14.3	_	_	7,000	100
ead	_	_	_		2.4	_	_	4.2	3
Magnesium	_	_	_	_	66,900	_	_		5,000
/Anganese	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			0.6	_	_		15
Mercury	DC //	_	19 2 30 51	891-8-1-1-1	0.1 UJ	_		0.2	0.2
lickel	_	_	_		3.5	_	_	96	40
otassium	_				3,970			70	5,000
elenium					4.4			8.5	5
		_	_						10
ilver	_				0.9			10	
odium	_		_		6,580	_			5,000
hallium					6.3	_		40	10
/anadium					7.6	_			50
Zinc	_				0.7		_	86	20
Inorganics - Metals and Cyanide Total)									
Aluminum	_	_	_	_	55.3	_	_		
	_	_		_	3.9	_			
Antimony					STATE OF THE PARTY				
Arsenic					38.7 9.9				
Barium	_			_		-	_		
Beryllium Cadmium	_			==	0.2		_		_
						_			
Calcium	_			_	209,000 J		_		
Chromium			_		2.8				
Cobalt					0.6	_			
Copper	-		_	_	1.2		-	40	- 10
Cyanide					0.6	_		10	10
ron			_		31.3	-			
ead			_		2.4				
Magnesium				_	67,900	_		N 10 20 20 20 20 20 20 20 20 20 20 20 20 20	
Manganese	_		_		2.8		— A = A1		
Mercury				_	0.1 UJ	_	-		
Vickel				_	1.1			2.23	
Potassium			_		4,010	_		112	
elenium		_	_		4.4	_			
ilver					0.9				
odium		_	_		5,360	_			
hallium					6.3				Maria Maria
/anadium					6.7				
Zinc				_	0.7		_		1 - 4 May 2
Volatile Organic Compounds (VOCs)	_	_	_	_	BRL	_	_		
Semi-Volatile Organic Compounds (SVOCs)	-	_	_	_	BRL	_	_		

Notes:

- All results expressed in micrograms per liter (μg/L).
- 2) Standard Inorganic Data Qualifiers have been used.
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
- 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ
- 6) = No Sample Available (Location is Dry)
 7) U = Not detected at the listed reporting limit.
 8) B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
- 9) UJ = A value less than the CRQL but greater than the MDL.
- 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.

 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.

 12) CRQL = Contract Required Quantitation Limit
- 13) Samples analyzed for Dissolved Inorganics were field filtered using a .45 micron, gravity flow filter.
- 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

Groundwater Analysis Summary Table for Outfall Surface Water Run Off Location SWD-3

Sampling Event (All Results Expressed in Units of µg/l)

	Quarterly Results							1	
Compound	November-03	March-04	May-04	September-04	December-04	March-05	June-05	TRIGGER LEVEL	CRQL
Inorganics - Metals (Dissolved) ¹³				Location is Dry			Location is Dry		
Aluminum	98.7	34.6	55.3		55.3 U	65.5	_	Constitution of the	200
Antimony	3.7	3.7	3.9		3.9	25.0	_	60	60
Arsenic	2.9	5.3	5.4	_	30.2	5.4	_	20	10
Barium	40.1	29.8	32.7	_	31.1	24.4	_	1,000	200
Beryllium	0.1	0.2	0.2		0.2	0.2	_	5	5
Cadmium	0.2	0.2	0.3		0.3	0.3	-	5	5
Calcium	130,000	125,000	107,000	_	131,000 J	93,300	_		5,000
Chromium	1.4	0.8	1.5		2.2	1.7		11	10
Cobalt	0.4	0.4	0.6	_	0.9	0.6			50
Copper	10.4	4.6 J	1.2		2.8	1.2	- 38	25	25
Iron	59.0	17.2	22.2	_	17.8	17.3	_	7,000	100
Lead	1.5	1.5	2.4	-	2.4	2.4 UJ	-	4.2	3
Magnesium	28,500	30,400	27,800		26,100	21,400			5,000
Manganese	10.9	3.0	77.2		4.3	20.5	-		15
Mercury	0.1 UJ	0.1	0.1	_	0.1 UJ	0.1	_	0.2	0.2
Nickel	0.7	1.4	1.2		2.1	1.1	-	96	40
Potassium	3,870	3,570	4,200	-	3,390	3,660			5,000
Selenium	4.4	4.4 UJ	4.4 R		4.4	4.4 UJ	-	8.5	5
Silver	0.4	0.4	0.9	10 July 1 J	0.9	0.9	_	10	10
Sodium	11,100	12,200	14,800	_	10,300	8,870		40	5,000
Thallium	2.6	2.6	6.3		6.3	6.3		40	10 50
Vanadium	2.2	0.8	1.1		27.0	10.0 0.7		86	20
Zinc	91.6 J	0.0	0.7		27.0	0.7	-	80	20
Inorganics - Metals and Cyanide (Total)								
Aluminum	177	1,800	199	2 - 100 E C A A	55.3	560	_		-111
Antimony	3.7	5.2	3.9	_	3.9	3.9	_		
Arsenic	2.9	2.9	5.4	_	25.5	5.4	_		
Barium	37.0	40	33.1	_	32.8	29.5	_		
eryllium	0.1	0.2	0.2	_	0.2	0.2			
Cadmium	0.2	0.2	0.3		0.3	0.3	_		
Calcium	12,100	131,000	108,000		135,000 J	104,000	_		No.
Chromium	1.0	1.4	1.5	_	1.5	1.5	-		
Cobalt	0.4	1.5	0.6	_	0.6	0.6		CONTRACTOR OF THE PARTY	
Copper	14.8	11 J	1.2	_	7.8	1.2	_	174 ALC: 688	
Cyanide	3.0	0.8	0.8	_	0.5	0.8		10	10
Iron	155	2200	258		67.8	814	_		
Lead	1.5	1.5	2.4		2.4	2.4 UJ	_		
Magnesium	26,600 16.5	31,600 87.5	28,700		27,400	23,900			
Manganese	1		87.9		3.2	42.6		1 2 2 2	
Mercury	0.1 UJ	0.1	0.1		0.1 UJ	0.1			
Nickel Potassium	3,560	2.5 4,170	1.2	_	1.1	1.1	_		
Potassium Selenium	3,500	4,170 4.4 R	4,100 4.4 UJ		3,450 4.4	4,020 4.4			
Silver	0.4	0.4	0.9		0.9	0.9			-
Sodium	10,300	12,600	14,100		10,400	9,320			100
Thallium	2.6	2.6	6.3	_	6.3	6.3			
Vanadium	0.8	2.2	1.1		4.7	10.4	_		
Zinc	32.6 J	14.6	1.3	_	7.3	0.7	_		
Volatile Organic Compounds (VOCs)	BRL	BRL	BRL	i -	BRL	BRL	- 1	HOLDERSON	
Semi-Volatile Organic Compounds (SVOCs)	BRL	BRL	BRL	_	BRL	BRL	_		
Acenaphthene						0.911 J		520	10
Fluorene Phenanthrene			-		-	0.503 J		10	10
						1.02 J	-	10	10
Pesticides / PCBs	BRL	BRL	BRL	_	BRL	BRL	_	BRL	

- 1) All results expressed in micrograms per liter ($\mu g/L$). 2) Standard Inorganic Data Qualifiers have been used.
- 3) Yellow shading indicate a detection above the Contract Required Quantitation Limit (CRQL)
 4) Bold red letters with a thick outline indicates a detection above the Trigger Level.
 5) BRL = Below Report Limit; reported data values have a data qualifier of U. J, or UJ

- 6) = No Sample Available (Location is Dry) 7) U = Not detected at the listed reporting limit.

- | 8| B = An estimated value above the method detection limit (MDL) or the instrument detection limit (IDL) but below the CRQL.
 | 9| UI = A value less than the CRQL but greater than the MDL.
 | 10) J = The analyte was positively identified; the associated numerical value is the approximate concentration of analyte in the sample.
 | 11) R = The sample results are rejected due to deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte can not be verified.
 | 12) CRQL = Contract Required Quantitation Limit

- 13) Samples analyzed for <u>Dissolved</u> Inorganics were field filtered using a .45 micron, gravity flow filter.

 14) Detailed summary tables which list report limits and qualified data values for each compound analyzed for by the laboratory as well as qualified laboratory reports are available upon request.

LABORATORY DATA VALIDATION REPORT

DATA VALIDATION REPORT

FOR

SKINNER LANDFILL SITE

EARTH TECH: PROJECT NUMBER 54280

LABORATORY REPORT NUMBER 205061509

PROJECT MANAGER: Ron Rolker

Date: September 7, 2005

Data Validator: Mark Kromis

LIST OF ACRONYMS

BFB Bromofluorobenzene CC Continuing Calibration

CCV Continuing Calibration Verification
CCB Continuing Calibration Blanks
CLP Contract Laboratory Program
CRDL Contract Required Detection Limit
DFTPP Decafluorotriphenylphosphine

GC/MS Gas Chromatograph/Mass Spectrometer

IC Initial Calibration

ICB Initial Calibration Blank
IDL Instrument Detection Limit
ICP Inductively Coupled Plasma
ICS Interference Check Sample
ICV Initial Calibration Verification

ILM Inorganic Analysis Multi-Media Multi-Concentration

INDAM Individual A Mixture INDBM Individual B Mixture mg/L milligrams per liter

MS/MSD Matrix Spike Matrix Spike Duplicate
OLC Organic Analysis Low Concentration

OLM Organic Analysis Multi-Media Multi-Concentration

%D Percent Difference

% RSD Percent Relative Standard Deviation

PB Preparation Blanks
QC Quality Control
RF Response Factor

RPD Relative Percent Difference
RRF Relative Response Factor
SDG Sample Delivery Group
SOW Statement of Work

µg/L micrograms per liter

US EPA United States Environmental Protection Agency

VOC Volatile Organic Compounds
VTSR Validated Time of Sample Receipt

Case Narrative

The data validator contacted GACL because of several discrepancies that were discovered during the data validation process. The discrepancies noted are as follows:

- 1. There was no documentation for the Volatiles Continuing Calibration (CC) dated 6/23/05.
- 2. There were two GCAL ID numbers listed on page five of the data package submittal that had two different Earth Tech ID numbers.
- 3. There was no indication of why GCAL ID numbers 20, 26, 37, and 38 were not listed on page five of the data package submittal.

GCAL comments are provided below:

GCAL provided the Volatiles CC dated 6/23/05 (addition of page 163A through 163I).

The duplication of GCAL ID 20506150930 was a mistake made in log-in when the samples had to be re-logged for re-extraction. The re-extracted sample has been given a new number of 20506150942 and the package corrected to reflect the new number.

Several samples were not included in the report sample summary. Samples 20, 26, and 37 were all associated with sample SKGW66-1014. Sample 20 was the parent sample, 26 was the dissolved metals prep, and 37 was the re-extract of sample 20 for pesticides. To report both a sample and the re-extract, the sample originally logged into the LIMS should be given a new GCAL ID number with a new client ID of "Client ID-RE". On June 23, 2005 Pat Higgins, in an e-mail, requested that Dana revise the chain of custody to delete sample SKGW66-1014. Sample 38 (SKGW60-1014) was scheduled for re-extraction and then cancelled because there was not enough sample to re-extract. There was also insufficient sample left for the re-extraction of SKGW06R-1014.

The state of the s

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061509 INORGANICS

Validation of the inorganics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Inorganic Data Review, (US EPA, February, 1994), as appropriate. The results were reported by GCAL under Sample Delivery Group (SDG) 205061509.

GCAL#	Sample Description
20506150901	SKGW06R-1014
20506150902	SKGW07R-1014
20506150904	SKGW06R-1014 (DISS)
20506150905	SKGW07R-1014 (DISS)
20506150907	SKGW59-1014
20506150908	SKGW59-1014 DUP
20506150909	SKGW61-1014
20506150910	SKGW64-1014
20506150911	SKGW63-1014
20506150912	SKGW62A-1014
20506150914	SKGW59-1014 (DISS)
20506150915	SKGW59-1014 (DISS) DUP
20506150916	SKGW61-1014 (DISS)
20506150917	SKGW64-1014 (DISS)
20506150918	SKGW63-1014 (DISS)
20506150919	SKGW62A-1014 (DISS)
20506150921	SKGW60-1014
20506150922	SKGW58-1014
20506150923	SKGW58-1014 MS
20506150925	SKGW58-1014 DUP
20506150927	SKGW60-1014 (DISS)
20506150928	SKGW58-1014 (DISS)
20506150929	SKGW58-1014 MS (DISS)
20506150930	SKGW58-1014 DUP (DISS)

INTRODUCTION

Analysis Multi-media Multi-concentration ILM04.1 Statement of Work (SOW). Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values maybe used without reservation. The laboratory to denote specific information regarding the analytical results uses various qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the inorganics data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. Calibration
 - A. Initial Calibration (IC)
 - B. Continuing Calibration (CC)
- 3. Blanks
- 4. Inductively Coupled Plasma (ICP) Interference Check Sample
- 5. Laboratory Control Sample (LCS)
- 6. Duplicate Analysis
- 7. Spike Sample Analysis
- 8. ICP Serial Dilution
- 9. System Performance

- 10. Documentation
- 11. Overall Assessment

1. HOLDING TIMES

All samples for inorganics analyses were analyzed within the 180-day holding time for preserved aqueous samples. Mercury analyses were conducted within the 28-day holding time for aqueous samples undergoing CLP protocol. Cyanide analyses were conducted within the 14-day holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. CALIBRATION

A. Initial Calibration

The percent recoveries for the Initial Calibration Verification (ICV) standard were within Quality Control (QC) limits for all constituents.

B. Continuing Calibration

The percent recoveries for the Continuing Calibration Verification (CCV) standard were within QC limits for all constituents.

3. BLANKS

The Initial Calibration Blank (ICB), Continuing Calibration Blanks (CCB) and Preparation Blanks (PB) were analyzed at the appropriate frequencies. No constituents were detected in the ICB, CCB, and PB blanks above the corresponding Contract Required Detection Limit (CRDL) with the exception of Selenium in the ICB and CCB#5 and Iron in the PB for the run dated 6/30/05. As per the National Functional Guidelines; sample results greater than the IDL but less than 5 times the amount found in any blank should be qualified as (U). If any analyte concentration in the PB is above the CRDL, the lowest concentration of that analyte in the associated samples must be 10 times the PB concentration. Otherwise, all samples associated with that blank should have been redigested and reanalyzed. Technically the samples should have been re-digested and re-analyzed for Selenium and Iron.

4. **ICP INTERFERENCE CHECK SAMPLE**

Results for the ICP analysis of the Interference Check Sample (ICS) solution AB were within 20% of the true value.

5. LABORATORY CONTROL SAMPLES

Recoveries were within the control limit (80-120%) for all constituents.

6. DUPLICATE ANALYSIS

The laboratory used sample SKGW58-1014 (total and dissolved fractions) for the duplicate sample. The Relative Percent Difference (RPD) between the sample and duplicate results for the total and dissolved fractions were within the acceptance criteria (<20%) for all target analytes.

7. SPIKE SAMPLE ANALYSIS

The laboratory used sample SKGW58-1014 (total and dissolved) for the matrix spike sample. The MS percent recoveries were within the acceptance criteria (75%-125%) with the exception of Selenium (0%) and Thallium (64%) in the total fraction. The MS percent recoveries were within the acceptance criteria (75%-125%) with the exception of Arsenic (129%) and Selenium (41%) in the dissolved fraction. As per the National Functional Guidelines: if the percent recovery is less than 75% but greater than 30% then qualify detected results for that analyte with "J" and non-detected results with "UJ". If the percent recovery is less than 30% qualify detected results with "J" and non-detected results with "R". If the percent recovery is greater than 125% qualify detected results with "J".

8. ICP SERIAL DILUTION

As noted in the National Functional Guidelines: If the analyte concentration is at least 50 times above the IDL, its serial dilution analysis must then agree within 10% of the original determination after corrected for dilution. The serial dilution is performed to determine whether any significant chemical or physical interference's exist due to matrix effects. The serial dilution percent differences were within the acceptance criteria for all target analytes with the exception of Aluminum, Calcium, Iron, Copper, Magnesium, Manganese, Sodium, and Vanadium associated with the total fraction. As per the National Functional Guidelines, if the serial dilution criterion is not met then qualify the associated results for that analyte with "J".

9. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data.

10. DOCUMENTATION

The documentation submitted for review appeared accurate and in order with the exception of an "E" qualifier associated with the Potassium result for sample SKGW-58-1014. The laboratory qualified the lead result with an "E" when the "Difference for the serial dilution was actually within the acceptance criteria. The data validator crossed out the "E" qualifier with a single line and dated and initialized the correction.

11. OVERALL ASSESSMENT

The percent recoveries for Lead in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 98%, 80%, and 77%.

The percent recoveries for Nickel in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 80%, 78%, and 79%.

The percent recoveries for Selenium in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 116%, 122%, and 143%.

The percent recoveries for Zinc in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 109%, 136%, and 118%.

The percent recoveries for Lead in the Contract Required Detection Limit (CRDL) standards analyzed on 7/1/05 were 102%, 73%, and 78%.

The percent recoveries for Nickel in the Contract Required Detection Limit (CRDL) standards analyzed on 7/1/05 were 68%, 64%, and 65%.

If the CRDL is greater than 120% then detected results greater than the IDL but less than two times the CRDL are qualified as estimated with "J". If the CRDL is below 80% then detected results are qualified as estimated with "J" and the non-detected results were qualified with "UJ".

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061509 SEMIVOLATILE ORGANICS

Validation of the Gas Chromatograph/Mass Spectrometer (GC/MS) semi-volatile organics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999) as appropriate. The results were reported by GCAL under SDG 205061509.

GCAL#	Sample Description
20506150901	SKGW06R-1014
20506150902	SKGW07R-1014
20506150907	SKGW59-1014
20506150908	SKGW59-1014 DUP
20506150909	SKGW61-1014
20506150910	SKGW64-1014
20506150911	SKGW63-1014
20506150912	SKGW62A-1014
20506150921	SKGW60-1014
20506150922	SKGW58-1014
20506150923	SKGW58-1014 MS
20506150924	SKGW58-1014 MSD

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Multi-Media, Multi-Concentration OLM04.2 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. The laboratory to denote specific information regarding the analytical results uses various data qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the semivolatile data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. GC/MS Tuning
- 3. Calibration
 - A. IC
 - B. CC
- 4. Blanks
- 5. System Monitoring Compound Recovery
- 6. MS/MSD
- 7. Internal Standards Performance
- 8. Compound Identification
- 9. Constituent Quantitation and Reported Detection Limits
- 10. System Performance
- 11. Documentation
- 12. Overall Assessment

1. HOLDING TIMES

All samples were initially extracted within the seven-day technical holding time and the five-day Validated Time of Sample Receipt (VTSR) method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. GC/MS TUNING

The samples were analyzed on a single GC/MS system, identified as MSSV3. One decafluorotriphenylphosphine (DFTPP) tune was run representing the shift in which the standards and samples were analyzed. The DFTPP tune is acceptable.

3. CALIBRATION

A. Initial Calibration

One IC dated 7/14/05 was analyzed in support of the semivolatile sample analyses. Documentation of the IC was present in the data package, and the Relative Response Factor (RRF), as well as percent % RSD values were accurately reported for all target compounds. The criteria employed for technical data review purposes are different than those used in the method. The laboratory must meet a minimum RRF of 0.01; however, for data review purposes, a RRF criterion of "greater than or equal to 0.05" is applied to all semi-volatile compounds. The RRF's and the average RRF were within the acceptance criteria specified in the method for all reported analytes.

B. Continuing Calibration

One CC dated 7/14/05 was analyzed in support of the semivolatile sample analyses reported in the data submissions. The RRF's for the CC are within the acceptance criteria. The percent difference (%D) between the average RRF's and the CC Response Factors were within the acceptance criteria.

4. BLANKS

One laboratory semivolatile method blank was analyzed with this SDG. The results are summarized below.

Method Blank (MB250947)

Di-n-butylphthalate (0.949 ppb) and Bis-(2-ethylhexyl) phthalate (1.30 ppb) were detected in the blank extracted on 6/20/05.

5. SYSTEM MONITORING COMPOUND RECOVERY

All reported semivolatile system monitoring compounds (SMC) were recovered within acceptable control limits with the exception of Trephenyl-d14 associated with samples SKGW631014 (32%), SKGW58-1014 MS (25%) and SKGW58-1014 MSD (31%) and 2,4,6-Tribromophenol associated with sample SKGW60-1014 (128%). As per the National Functional Guidelines, no action is taken when only one SMC is outside of the acceptance criteria.

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

Sample SKGW58-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria with the exception of 4-Nitrophenol associated with the MSD. The %RPD between the MS/MSD are within the acceptance criteria with the exception of the %RPD for Pyrene. As per the National Functional Guidelines, no action is taken on MS/MSD data alone.

7. INTERNAL STANDARDS PERFORMANCE

Internal standard areas and retention times were within acceptable limits for the reported semivolatile sample analyses.

8. COMPOUND IDENTIFICATION

All reported semivolatile constituents were correctly identified with supporting chromatograms present in the data package.

9. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for semivolatile constituents

10. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data submitted for review.

11. DOCUMENTATION

The documentation appeared accurate and in order.

12. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061509 VOLATILE ORGANIC

Validation of the GC/MS volatile organics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999), as appropriate. The results were reported by GCAL under SDG 205061509.

GCAL#	Sample Description
20506150901	SKGW06R-1014
20506150902	SKGW07R-1014
20506150903	Trip Blank
20506150907	SKGW59-1014
20506150908	SKGW59-1014 DUP
20506150909	SKGW61-1014
20506150910	SKGW64-1014
20506150911	SKGW63-1014
20506150912	SKGW62A-1014
20506150913	Trip Blank
20506150921	SKGW60-1014
20506150922	SKGW58-1014
20506150923	SKGW58-1014 MS
20506150924	SKGW58-1014 MSD

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Low Concentration OLC02.0 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. The laboratory to denote specific information regarding the analytical results uses various qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The volatiles data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. GC/MS Tuning
- 3. Calibration
 - A. IC
 - B. CC
- 4. Blanks
- 5. System Monitoring Compound Recovery
- 6. MS/MSD
- 7. Laboratory Control Sample
- 8. Internal Standards Performance
- 9. Compound Identification
- 10. Constituent Quantitation and Reported Detection Limits
- 11. System Performance
- 12. Documentation
- 13. Overall Assessment

1. HOLDING TIMES

All samples for Volatile Organic Compounds (VOC) analyses were analyzed within the 14-day technical holding time and the 10-day VTSR method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. GC/MS TUNING

The samples were analyzed on two GC/MS systems, identified as MSV4. Two bromofluorobenzene (BFB) tunes were run on MSV4. The BFB tunes are acceptable.

3. CALIBRATION

A. Initial Calibration

One IC dated 6/22/05 was analyzed on instrument MSV4 in support of the volatile sample analyses reported in the data submissions. Documentation of the IC standards is present in the data package, and RRF's as well as %RSD values were accurately reported. The criteria employed for technical data review purposes are different than those used in the method. The laboratory must meet a minimum RRF of 0.01; however, for data review purposes, a RRF criterion of "greater than or equal to 0.05" is applied to all volatile compounds.

The RRF's and the average RRF for the IC's dated 6/22/05 were within the acceptance criteria specified in the method for all target compounds with the exception of Acetone and 2-Butanone. As per the National Functional Guidelines, if any initial calibration RRF is less than 0.05, qualify positive results that have acceptable mass spectral identification with "J", using professional judgment, and non-detected analytes as unusable (R). It should be noted that the laboratory did meet the minimum RRF of 0.01 for all target compounds.

The %RSD's were within the acceptance criteria specified in the method for all target analytes with the exception of 1,2,4-Trichlorobenzene. As per the National Functional Guidelines, if the %RSD is greater than 30% then qualify the associated detected results for that compound(s) with "J".

B. Continuing Calibration

Two CC's dated 6/22/05 and 6/23/05 were analyzed on instrument MSV4 in support of the volatile sample analyses reported in the data submissions. The percent difference (%D) between the average RRF's and the CC RF's were within the acceptance criteria for all target compounds.

The CC RRF's for the CC dated 6/22/05 were within the acceptance criteria specified in the method for all target compounds with the exception of Acetone. The Acetone results were previously qualified under section 3A above.

The CC RRF's for the CC dated 6/23/05 were within the acceptance criteria specified in the method for all target compounds with the exception of Acetone. The Acetone results were previously qualified under section 3A above.

4. BLANKS

Two laboratory volatile method blanks, storage blank and two Trip Blanks were analyzed with this SDG. The results are summarized below.

MB251392

There were no target compounds detected in the method blank analyzed on 6/22/05.

MB251940

There were no target compounds detected in the method blank analyzed on 6/23/05.

Storage Blank (VHBLK)

Methylene chloride (0.045 ppb) was detected in the Storage Blank analyzed on 6/23/05.

Trip Blank

Methylene chloride (0.079 ppb) was detected in the Trip Blank associated with the samples that were collected on 6/14/05. The result was mitigated by the presence of Methylene chloride in the associated Storage Blank.

Trip Blank

Methylene chloride (0.043 ppb) was detected in the Trip Blank associated with the samples that were collected on 6/15/05. The result was mitigated by the presence of Methylene chloride in the associated Storage Blank.

5. SYSTEM MONITORING COMPOUND RECOVERY

All reported volatile system monitoring compounds were recovered within acceptable control limits (80%-120%) for all samples.

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample SKGW58-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria.

7. LABORATORY CONTROL SAMPLE

Two Laboratory Control Samples were analyzed in conjunction with this SDG. Recoveries were within the control limit for all constituents.

8. INTERNAL STANDARDS PERFORMANCE

Internal Standard (IS) areas and retention times were within acceptable limits for the reported volatile sample analyses.

9. COMPOUND IDENTIFICATION

All reported VOCs were correctly identified with supporting chromatograms present in the data package.

10. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for VOCs.

11. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data.

12. **DOCUMENTATION**

There was no VOA CC data dated 6/23/05 included in SDG 205061509. The data validator contacted GCAL and the laboratory supplied the missing data.

13. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY - SAMPLE DELIVERY GROUP 205061509 PESTICIDES

Validation of the Gas Chromatography (GC) pesticides data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999), as appropriate. The results were reported by GCAL under SDG 205061509.

GCAL#	Sample Description			
20506150901	SKGW06R-1014			
20506150902	SKGW07R-1014			
20506150907	SKGW59-1014			
20506150908	SKGW59-1014 DUP			
20506150909	SKGW61-1014			
20506150910	SKGW64-1014			
20506150911	SKGW63-1014			
20506150912	SKGW62A-1014			
20506150921	SKGW60-1014			
20506150922	SKGW58-1014			
20506150923	SKGW58-1014 MS			
20506150924	SKGW58-1014 MSD			
20506150931	SKGW59-1014 RE			
20506150932	SKGW59-1014 DUP RE			
20506150933	SKGW61-1014 RE			
20506150934	SKGW64-1014 RE			
20506150935	SKGW63-1014 RE			
20506150936	SKGW62A-1014 RE			
20506150939	SKGW58-1014 RE			
20506150940	SKGW58-1014 MS RE			
20506150941	SKGW58-1014 MSD RE			
20506150942	SKGW07R-1014 RE			

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Multi-Media, Multi-Concentration OLM04.2 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. Various qualifier codes are used by the laboratory to denote specific information regarding the analytical results.

The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the pesticide data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. Gas Chromatograph/Electronic Capture Detector (GC/ECD) Instrument Performance Check
- 3. IC
- 4. Calibration Verification
- 5. Blanks
- 6. Surrogate Spikes
- 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- 8. Pesticide Cleanup Checks
- 9. Target Compound Identification
- 10. Constituent Quantitation and Reported Detection Limits

- 11. Documentation
- 12. Overall Assessment

1. HOLDING TIMES

All samples were originally extracted within the seven-day technical holding time and the five-day VTSR method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C. The samples were re-extracted outside of the technical and VSTR method holding times. As per the National Functional Guidelines, if technical holding times are exceeded, qualify all detected compound results as estimated "J" and sample quantitation limits as estimated "UJ".

2. GC/ECD INSTRUMENT PERFORMANCE CHECK

The Performance Evaluation Mixture (PEM) was analyzed at the correct frequency. Absolute retention times were within limits.

The percent resolution between adjacent peaks was within QC limits for the Pesticide Analyte Resolution Check. The percent resolution between adjacent peaks is within QC limits for the Performance Evaluation Mixtures (PEM). The percent breakdown for both 4,4'-DDT and Endrin in each PEM was less than 20.0% for both GC columns. The combined percent breakdown for 4,4'-DDT and Endrin in each PEM was less than 30.0% for both GC columns.

3. INITIAL CALIBRATION

Individual standard mixtures A and B were analyzed at the correct frequencies and concentrations. The percent resolution criterion for Individual standard mixtures A and B were within the acceptance criteria.

The Percent Relative Standard Deviation (%RSD) of the calibration factors for each of the single component pesticides was less than 20% with the exception of alpha-BHC (25.0%) and gamma-BHC (22.9%) associated with the samples analyzed on 6/28/05 (RTX-XLB). The multi-component target compounds were analyzed separately on both columns at a single concentration level. Retention times were determined from a minimum of three peaks. As per the National Functional Guidelines, up to two single component target pesticides (other than the surrogates) per column may exceed the 20% limit but the %RSD must be less than 30.0%.

4. CALIBRATION VERIFICATION

Absolute retention times were within appropriate time retention windows. The percent difference for each of the pesticides and surrogates in the PEM's were within the acceptance criteria of ±25.0 percent for the calibration dated 6'24'05 on column RTX-35MS.

The percent difference for each of the pesticides and surrogates in the PEM's were within the acceptance criteria of ± 25.0 percent with the exception of Endrin for the calibration dated 6/29/05 (1542) on column RTX-XLB.

The percent difference for each of the pesticides and surrogates in the midpoint concentration of the Individual Standard Mixtures A and B was within the acceptance criteria of ± 25.0 percent.

As per the National Functional Guidelines, if the percent difference is greater than 25 percent for the compound(s) being quantified, qualify all associated detected results with "J" and non-detects with "UJ".

BLANKS

Two laboratory method blanks were analyzed with this SDG. The results are summarized below.

Method Blank 250946

Toxaphene was detected at a concentration of 0.384 ppb in Method Blank 250946. This blank corresponds to all samples extracted on 6/20/05.

Method Blank 255653

No constituents were detected above the laboratory-reporting limit. This blank corresponds to all samples extracted on 6/24/05.

6. SURROGATE SPIKES

Decachlorobiphenyl (DCB) and tetrachloro-m-xylene (TCX) surrogate spike recoveries were within the acceptance criteria (30% - 150%) for all samples except as follows:

Sample ID	<u>TCX (%)</u>	<u>DCM (%)</u>
SKGW06R-1014	55/54	3 4/26
SKGW07R-1014	57/57	30/29
SKGW59-1014 Dup	36/38	40/18
SKGW61-1014	44/58	37/ 29
SKGW64-1014	21/32	23/19
SKGW63-1014	36/37	20/15
SKGW62A-1014	39/40	27/21

The samples were re-extracted do to Toxaphene contamination associated with the Method Blank extracted on 6/20/05. The surrogate recoveries in the re-extracted samples where within the acceptance limits. As per the National Functional Guidelines, if the surrogate(s) recoveries are between 10 and 30 percent then qualify detected compounds with "J" and non-detected compounds with "UJ".

7. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample SKGW58-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria.

8. PESTICIDE CLEANUP CHECKS

Recoveries of all pesticides and surrogates were within 80-120% for the lot of Florisil cartridges utilized for pesticide cleanup.

9. TARGET COMPOUND IDENTIFICATION

All reported pesticide data were correctly identified with supporting chromatograms present in the data package.

10. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for pesticide constituents.

11. DOCUMENTATION

Page 5 of SDG 205061509 had several GCAL ID number missing 20, 26, 37, 38 and had two samples listed with the same GCAL ID 20506150930. The case narrative for SDG 205061509 stated that all of the pesticides were re-extracted yet on page 5 titled Report sample Summary samples SKGW06R-1014 and SKGW60-1014 are not listed.

GCAL provided the following explanations:

The duplication of GCAL ID 20506150930 was a mistake made in log-in when the samples had to be re-logged for re-extraction. The re-extracted sample has been given a new number of 20506150942 and the package corrected to reflect the new number.

Several samples were not included in the report sample summary. Samples 20, 26, and 37 were all associated with sample SKGW66-1014. Sample 20 was the parent sample, 26 was the dissolved metals prep, and 37 was the re-extract of sample 20 for pesticides. To report both a sample and the re-extract, the sample originally logged into the LIMS should be given a new GCAL ID number with a new client ID of "Client ID-RE". On June 23, 2005 Pat Higgins, in an e-mail, requested that Dana revise the chain of custody to delete sample SKGW66-1014. Sample 38 (SKGW60-1014) was scheduled for re-extraction and then cancelled because there was not enough sample to re-extract. There was also insufficient sample left for the re-extraction of SKGW06R-1014.

12. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

REFERENCES

US EPA, 1994. National Functional Guidelines for Inorganic Data Review.

US EPA, 1999. National Functional Guidelines for Organic Data Review.

ANALYTICAL RESULTS

PERFORMED BY

GULF COAST ANALYTICAL LABORATORIES, INC.

Report Date 07/19/2005

GCAL Report 205061509

Deliver To Earth Tech 2373 Progress St Hebron, KY 41048

859-442-2300

Attn Pat Higgins

Customer Earth Tech

Project Skinner Landfill

000001.
RESUBMITTED

CASE NARRATIVE

Client: Earth Tech Report: 205061509

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the sample cross-reference page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

The report sample summary (page 5), Pesticide method blank summary (page 391), sample SKCW07R-1014RE Form I and raw data (pages 442-446), prep sheets (page 672-673), and batch run logs (pages 676 and 679) are resubmitted to correct the GCAL sample ID number. The number was reassigned from 20506150930 to 20506150942. Also submitted for the mass spectrometry volatiles analysis is the BFB raw data and CCV summary and raw data for 06/23/05 on instrument msv4. The case narrative regarding the re-extraction of the OLM04.2 Pesticide samples has been corrected.

The pesticide method blank summary page was resubmitted to correct duplicate entries of samples 20506150940 and 20506150941.

SEMI-VOLATILES MASS SPECTROMETRY

In the OLM04.2 CLP analysis samples 20506150911 (SKGW63-1014), 20506150923 (SKGW58-1014 MS), and 20506150924 (SKGW58-1014 MSD) had one base-neutral surrogate outside QC limits, sample 20506150921 (SKGW60-1014) had one acid surrogate outside QC limits.

In the OLM04.2 CLP analysis, the recovery for 4-Nitrophenol was slightly above QC limits in the MSD, and the RPD for Pyrene was exceeded.

SEMI-VOLATILES GAS CHROMATOGRAPHY

In the OLM04.2 Pesticide analysis several surrogate recoveries were outside of advisory limits as indicated on Form II. In batch 295010 the matrix spike recovery for gamma-bhc was outside QC limits.

In the OLM04.2 Pesticide analysis, the method blank 250946 had Toxaphene present at 0.384 ug/L, which was below the CRDL. All samples except SKGW06R-1014 and SKGW60-1014 were re-extracted to verify Toxaphene was attributed to laboratory contamination. Both sets of data are being included in the report. The two samples that were not re-extracted did not have sufficient sample volume.

METALS

In the ILM04.1 - CLP analysis for prep batch 293859, the MS recoveries were outside the control limits for Selenium and Thallium. The LCS recoveries were within the control

000002 RESUBMITTED limits. This indicates the analysis is in control and the sample is affected by matrix interference. The MS recovery is not applicable for Aluminum and Iron because the sample concentrations are greater than four times the spike concentrations. Aluminum, Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium, and Vanadium are flagged as estimated due to the fact that the percent difference between the original sample results and the serial dilution results are greater than 10. A chemical or physical interference is suspected.

In the ILM04.1 - CLP analysis for prep batch 293860, the MS recoveries were outside the control limits for Arsenic and Selenium. The LCS recoveries were within the control limits. This indicates the analysis is in control and the sample is affected by matrix interference. The sample/duplicate RPDs for Chromium and Zinc for prep batch 293860 are not applicable because the sample and/or duplicate concentrations are less than five times the reporting limit.

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations Utilized in this Report

ND Indicates the result was Not Detected at the specified RDL

DO Indicates the result was Diluted Out

MI Indicates the result was subject to Matrix Interference Indicates the result was Too Numerous To Count

SUBC Indicates the analysis was Sub-Contracted

FLD Indicates the analysis was performed in the Field

PQL Practical Quantitation Limit
MDL Method Detection Limit
RDL Reporting Detection Limit

00:00 Reported as a time equivalent to 12:00 AM

Reporting Flags Utilized in this Report

J Indicates an estimated value

U Indicates the compound was analyzed for but not detected

B (ORGANICS) Indicates the analyte was detected in the associated Method Blank

B (INORGANICS) Indicates the result is between the RDL and MDL

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with ISO Guide 25 and NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with the terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

CURTIS EKKER

DATA VALIDATION MANAGER GCAL REPORT 205061509

THIS REPORT CONTAINS **878** PAGES.

Report Sample Summary

GCÁL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
20506150901	SKGW06R-1014	Water	06/14/2005 15:15	06/15/2005 09:00
20506150902	SKGW07R-1014	Water	06/14/2005 15:55	06/15/2005 09:00
20506150903	TRIP BLANK	Water		06/15/2005 09:00
20506150904	SKGW06R-1014 (DISS)	Water	06/14/2005 15:15	06/15/2005 09:00
20506150905	SKGW07R-1014 (DISS)	Water	06/14/2005 15:55	06/15/2005 09:00
20506150906	VHBLK	Water		06/15/2005 09:00
20506150907	SKGW59-1014	Water	06/15/2005 13:10	06/16/2005 09:15
20506150908	SKGW59-1014 DUPE	Water	06/15/2005 13:50	06/16/2005 09:15
20506150909	SKGW61-1014	Water	06/15/2005 14:45	06/16/2005 09:15
20506150910	SKGW64-1014	Water	06/15/2005 09:45	06/16/2005 09:15
20506150911	SKGW63-1014	Water	06/15/2005 10:35	06/16/2005 09:15
20506150912	SKGW62A-1014	Water	06/15/2005 11:30	06/16/2005 09:15
20506150913	TRIP BLANKS	Water	06/15/2005 00:00	06/16/2005 09:15
20506150914	SKGW59-1014 (DISS)	Water	06/15/2005 13:10	06/16/2005 09:15
20506150915	SKGW59-1014 (DISS) DUPE	Water	06/15/2005 13:10	06/16/2005 09:15
20506150916	SKGW61-1014 (DISS)	Water	06/15/2005 14:45	06/16/2005 09:15
20506150917	SKGW64-1014 (DISS)	Water	06/15/2005 09:45	06/16/2005 09:15
20506150918	SKGW63-1014 (DISS)	Water	06/15/2005 10:35	06/16/2005 09:15
20506150919	SKGW62A-1014 (DISS)	Water	06/15/2005 11:30	06/16/2005 09:15
20506150921	SKGW60-1014	Water	06/16/2005 13:35	06/17/2005 10:20
20506150922	SKGW58-1014	Water	06/16/2005 10:05	06/17/2005 10:20
20506150923	SKGW58-1014 MS	Water	06/16/2005 10:30	06/17/2005 10:20
20506150924	SKGW58-1014 MSD	Water	06/16/2005 10:55	06/17/2005 10:20
20506150925	SKGW58-1014 DUP	Water	06/16/2005 10:55	06/17/2005 10:20
20506150927	SKGW60-1014 (DISS)	Water	06/16/2005 13:35	06/17/2005 10:20
20506150928	SKGW58-1014 (DISS)	Water	06/16/2005 10:05	06/17/2005 10:20
20506150929	SKGW58-1014 MS(DISS)	Water	06/16/2005 10:30	06/17/2005 10:20
20506150930	SKGW58-1014 DUP(DISS)	Water	06/16/2005 10:55	06/17/2005 10:20
20506150931	SKGW59-1014 RE	Water	06/15/2005 13:10	06/16/2005 09:15
20506150932	SKGW59-1014 DUPE RE	Water	06/15/2005 13:50	06/16/2005 09:15
20506150933	SKGW61-1014 RE	Water	06/15/2005 14:45	06/16/2005 09:15
20506150934	SKGW64-1014 RE	Water	06/15/2005 09:45	06/16/2005 09:15
20506150935	SKGW63-1014 RE	Water	06/15/2005 10:35	06/16/2005 09:15
20506150936	SKGW62A-1014 RE	Water	06/15/2005 11:30	06/16/2005 09:15
20506150939	SKGW58-1014 RE	Water	06/16/2005 10:05	06/17/2005 10:20
20506150940	SKGW58-1014 MS RE	Water	06/16/2005 10:30	06/17/2005 10:20
20506150941	SKGW58-1014 MSD RE	Water	06/16/2005 10:55	06/17/200 5 10:20
20506150942	SKGW07R-1014 RE	Water	06/14/2005 15:55	06/15/2005 09:00

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

SKGW06R-1014

ab Name: GC	AL Contract:					
ab Code: LA0	24 Case No.:	SAS No.:		SDG No.: 205061	509	
latrix: (soil/water)) Water					
ample wt/vol:	25 (g/ml) mL	Lab Sample ID:	2050615090	1		
evel: (low/med)		Lab File ID: 20	50623/U4224			
•		Date Collected:	'	Time: 15	15	
6 Moisture: not dec.						
C Column: DB-624-30M ID: .53 (mm)		Date Received:	Date Received: 06/15/05			
nstrument ID: MSV4		Date Analyzed:	06/23/05 Time: 1522			
oil Extract Volume: (µL)		Dilution Factor:	1 Analyst: RSP		RSP	
oil Aliquot Volume: (µL)		Prep Batch:	Analytical Batch: 294122			
·		Analytical Metho	d: OLCO 2.1			_
	TION UNITS: ug/L					
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
71-55-6	1,1,1-Trichloroethane	1.0	U	0.010	1.0	٦
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	0.010	1.0	1
79-00-5	1,1,2-Trichloroethane	1.0	υ	0.010	1.0	7
75-34-3	1,1-Dichloroethane	1.0	U	0.010	1.0	1
75-35-4	1,1-Dichloroethene	1.0	U	0.010	1.0	7
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	0.010	1.0	7
106-93-4	1,2-Dibromoethane	1.0	U	0.010	1.0	1
95-50-1	1,2-Dichlorobenzene	1.0	U	0.010	1.0	7
107-06-2	1,2-Dichloroethane	1.0	U	0.010	1.0	7
540-59-0	1,2-Dichloroethene	1.0	U	0.010	1.0	7
78-87-5	1,2-Dichloropropane	1.0	U	0.010	1.0	ヿ
541-73-1	1,3-Dichlorobenzene	1.0	U	0.010	1.0	7
106-46-7	1,4-Dichlorobenzene	1.0	U	0.010	1.0	ヿ゙
78-93-3	2-Butanone	5.0	U	0.010	5.0	∣ የ
591-78-6	2-Hexanone	5.0	U	0.010	5.0	7
108-10-1	4-Methyl-2-pentanone	5.0	U	0.010	5.0	7
67-64-1	Acetone	5.0	U	0.010	5.0	7 R
71-43-2	Benzene	1.0	U	0.010	1.0	٦.
75-27-4	Bromodichloromethane	1.0	U	0.010	1.0	7
75-25-2	Bromoform	1.0	U	0.010	1.0	7
74-83-9	Bromomethane	1.0	U	0.010	1.0	7
75-15-0	Carbon disulfide	1.0	υ	0.010	1.0	٦
56-23-5	Carbon tetrachloride	1.0	U	0.010	1.0	7
108-90-7	Chlorobenzene	1.0	U	0.010	1.0	7
75-00-3	Chloroethane	1.0	U	0.010	1.0	7
67-66-3	Chloroform	1.0	U	0.010	1.0	7
74-87-3	Chloromethane	1.0	T U	0.010	1.0	7
124-48-1	Dibromochloromethane	1.0	U	0.010	1.0	7
10061-01-5	cis-1,3-Dichloropropene	1.0	U	0.010	1.0	1
10061-02-6	trans-1,3-Dichloropropene	1.0	1 0	0.010	1.0	┪
100-41-4	Ethylbenzene	1.0	1 0	0.010	1.0	ヿ
				L		_

algles

SAMPLE NO.

SKGW06R-1014

Lab Name: GC	AL	ontract:	· · · · · · · · · · · · · · · · · · ·				
Lab Code: LA0	24 Case No.:		SAS No.:	s	DG No.: 205061	509	
Matric (soll/water) Water						
Sample without	25 (g/ml) mL		Lab Sample ID:	20506150901			
Level: (low/med)			Lab File ID: 20	50623/U4224			
% Maisture: not d	lec		Date Collected:	06/14/05	Time: 1	515	
GC Column: DE	8-624-30M ID: _53	(mm)	Date Received:	06/15/05			
Instrument ID: _I	MSV4		Date Analyzed:	06/23/05	Time: _1:	522	
Sail Extract Volum	ne:	(µL)	Dilution Factor:	1	Analyst	RSP	
Soil Aliquot Volun	nec	(µL)	Prep Batch:		Analytical	Batch: <u>294122</u>	_
CONCENTRAT	TION UNITS: ug/L		Analytical Method	d: OLCO 2.1			
CAS NO.	COMPOUND		RESULT	Q	MDL	RL	
75-09-2	Methylene chloride		2.094	J	0.010	2.0	Ju
100-42-5	Styrene		•.5	U	0.010	1.0	7
127-18-4	Tetrachloroethene		1.5	U	0.010	1.0	7
106-88-3	Toluene		1.5	υ	0.010	1.0	
79-01-6	Trichloroethene		1.0	U	0.010	1.0	┑
75-01-4	Vinyl chloride			U	0.010	1.0	7
1330-20-7	Xylene (total)		•)	U	0.010	1.0	7

9/8/25

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	
SKGW06R-1014	

Lab Name: GCAL	_Contract:				
Lab Code: LA024 Case No.:		SAS No.:	s	DG No.: 205	061509
Matrix: Water		Lab Sample ID:	20506150901		
Sample wt/vol: Units:	····	Lab File ID: 205	50623/U4224		
Level: (low/med)		Date Collected:	06/14/05	Time:	1515
% Moisture: not dec.		Date Received:	06/15/05		
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05	Time:	1522
Instrument ID: MSV4		Dilution Factor:	1	Analyst:	RSP
Soil Extract Volume:	(µL)				
Soil Aliquot Volume:	(µL)				
Number TICs Found: 1					
CONCENTRATION UNITS:					
CAS NO. COMPOUND		RT	EST. (CONC.	Q
1 . 107-89-1 Unknown		1.959	2.0	7	

SAMPLE NO.

SKGW07R-1014

Lab Code: LA024 Case No. SAS No.: SDG No.: 205 Matrix: (soil/water) Water Lab Sample wit/vol: 25 (g/ml) mL Lab Sample ID: 20506150902	061509
Semple wt/vol: 25 (g/ml) mL Lab Sample ID: 20506150902	
Levelt (knwimed) Lab File ID: 2050622/U4201	
% Maisture: not dec. Date Collected: 06/14/05 Time:	1555
3C Column: DB-624-30M ID53 (mm) Date Received: 06/15/05	
	4454
instrument ID: MSV4 Date Analyzed: 06/22/05 Time:	1401
Soil Extract Volume: (µL) Dilution Factor: 1 Analys	t RSP
Soil Aliquot Volume: (µL) Prep Batch: Analytic	ical Batch: 294018
CONCENTRATION UNITS: ug/L Analytical Method: OLCO 2.1	
CAS NO. COMPOUND RESULT Q MDL	RL
71-55-6 11,1,1-Trichlorosthere 1.0 U 0.010	1.0
79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 0.010	1.0
79-00-5 1,1,2-Trichlorosthane 1.0 U 0.010	1.0
75-34-3 1,1-Dichlorcethene 1.0 U 0.010	1.0
75-35-4 1,1-Dichlorgethene 1.0 U 0.010	1.0
120-82-1 1.2.4-Trichlarobenzene 1.0 U 0.010	1.0
105-93-4 1,2-Dibromosthene 10 U 0.010	1.0
95-50-1 1,2-Dichlorobergene 1.0 U 0.010	1.0
107-06-2 1_2-Dichlorosthene 1 0 U 0.010	1.0
540-59-0 1,2-Dichlorosthene '0 U 0.010	1.0
78-87-5 1,2-Dichloropropene '0 U 0.010	1.0
541-73-1 1,3-Dichlorobenzene 1.0 U 0.010	1.0
106-46-7 1,4-Dichlorobenzene 10 U 0.010	1.0
78-93-3 2-Butanone 5.0 U 0.010	5.0 K
591-78-6 2-Hexanone 5.0 U 0.010	5.0
106-10-1 4-Mothyl-2-pentanone 50 U 0.010	5.0
67-64-1 Acetone 50 U 0.010	5.0
71-43-2 Benzene 1.0 U 0.010	1.0
75-27-4 Bromodichloromethane 1.0 U 0.010	1.0
75-25-2 Bramoform 1.0 U 0.010	1.0
74-83-9 Bromomethene 1.0 U 0.010	1.0
75-15-0 Carbon disulfide 1.0 U 0.010	1.0
56-23-5 Carbon tetrachloride 1.0 U 0.010	1.0
108-90-7 Chloroberzene 1.0 U 0.010	1.0
75-00-3 Chlorosthane 1.0 U 0.010	1.0
67-66-3 Chloroform 1.0 U 0.010	1.0
74-87-3 Chloromethene 1.0 U 0.010	1.0
124-48-1 Dibromochlorometrane 1.0 U 0.010	1.0
10061-01-5 cis-1,3-Dichlarapropene 1.0 U 0.010	1.0
10061-02-6 trans-1,3-Dichloropropene 1.0 U 0.010	1.0
100-41-4 Elhyberzene 1.0 U 0.010	1.0

918105 MP

SAMPLE NO.

SKGW07R-1014

Lab Name: GCA	L	Contract:				
Lab Code: LA02	Case No.:		SAS No.:		SDG No.: 205	5061509
Matrix: (soil/water)	Water					
Sample wt/vol: 2	25 (g/ml) mL		Lab Sample ID:	2050615090)2	
_evel: (low/med)			Lab File ID: 205	50622/U4201		
% Moisture: not de	с.		Date Collected:	08/14/05	Time:	1555
GC Column: DB-	-624-30M ID: .53	3 (mm)	Date Received:	06/15/05		
nstrument ID: M	SV4		Date Analyzed:	06/22/05	Time:	1451
Soil Extract Volume	e:	(µL)	Dilution Factor:	1	Analys	st: RSP
Soil Aliquot Volume	e:	(µL)	Prep Batch:		Analyt	ical Batch: 294018
CONCENTRATI	ON UNITS: ug/L		Analytical Method	: OLCO 2.	1	
CAS NO.	COMPOUND		RESULT	Q	MDL	RL
75-09-2	Methylene chloride		2.0	Ū	0.010	2.0
100-42-5	Styrene		1.0	U	0.010	1.0
127-18-4	Tetrachloroethene		1.0	U	0.010	1.0
108-88-3	Toluene		1.0	U	0.010	1.0
79-01-6	Trichloroethene		1.0	Ü	0.010	1.0
75-01-4	Vinyl chloride		1.0	Ü	0.010	1.0
1330-20-7	Xylene (total)		1.0	υ	0.010	1.0

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.

SKGW07R-1014

Lab Name: GCAL	_Contract:		L	
Lab Code: LA024 Case No.:		SAS No.:	SDG	S No.: 205061509
Matrix Water		Lab Sample ID:	20506150902	
Sample wt/vol: Units:		Lab File ID: 20	50622/U4201	
Level: (low/med)		Date Collected:	06/14/05	Time: 1555
% Moisture: not dec.		Date Received:	06/15/05	
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/22/05	Time: 1451
Instrument ID: MSV4		Dilution Factor:	1	Analyst: RSP
Soil Extract Volume:	(此)			
Soil Aliquot Volume:	(µL)			
Number TICs Found: 1				
CONCENTRATION UNITS:				
CAS NO. COMPOUND		RT	EST. CO	NC. Q
1. 1823-52-5 2-Oxetanone, 4,4-dimethyl-		1.942	1.45	

SAMPLE NO.

SKGW59-1014

Lab Name: GCA	L Contract	:			
Lab Code: LA02	4 Case No.:	SAS No.:	sı	OG No.: 205061	509
Matrix: (soil/water)	Water				
Sample wt/vol: 2	5 (g/ml) mL	Lab Sample ID:	20506150907		
Level: (low/med)		Lab File ID: _20)50623/U4218		
% Moisture: not de	c	Date Collected:	06/15/05	Time: 13	10
GC Column: DB-	624-30M ID: .53 (mm) Date Received:	06/16/05		
Instrument ID: M	SV4	Date Analyzed:	06/23/05	Time: _12	30
Soil Extract Volume	e: (μL) Dilution Factor:	1	Analyst:	RSP
Soil Aliquot Volume				Analytical E	Batch: 294122
CONCENTRATION	•	Analytical Metho	d: OLCO 2.1		· 2000
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
71-55-6	Id 4.4 Triablements and		т	0.040	- 46 - 1
79-34-5	1,1,1-Trichloroethane	1.0	U	0.010	1.0
79-00-5	1,1,2,2-Tetrachloroethane	1.0	+ 0 +	0.010	1.0
75-34-3	1,1,2-Trichloroethane	1.0	- 0 	0.010	1.0
75-35-4	1,1-Dichloroethane	1.0		0.010	1.0
	1,1-Dichloroethene 1,2,4-Trichlorobenzene	1.0	U	0.010	1.0
120-82-1		1.0	U I	0.010	1.0
95-50-1	1,2-Dibromoethane 1,2-Dichlorobenzene	1.0	+ + + + + + + + + + + + + + + + + + + +	0.010	1.0
107-06-2	1,2-Dichloroethane	1.0		0.010	1.0
540-59-0	1,2-Dichloroethene	1.0	- U	0.010	1.0
78-87-5	1,2-Dichloropropane	1.0	1 ö 1	0.010	1.0
541-73-1	1,3-Dichlorobenzene	1.0	- 	0.010	1.0
106-46-7	1,4-Dichlorobenzene	1.0	- 	0.010	1.0
78-93-3	2-Butanone	5.0	-1 - ŭ -1	0.010	5.0 R
591-78-6	2-Hexanone	5.0		0.010	5.0
108-10-1	4-Methyl-2-pentanone	5.0	- - - 	0.010	5.0
67-64-1	Acetone	5.0	1 5 1	0.010	5.0 R
71-43-2	Benzene	1,0	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.010	1.0
75-27-4	Bromodichloromethane	1.0	U	0.010	1.0
75-25-2	Bromoform	1.0	Ü	0.010	1.0
74-83-9	Bromomethane	1.0	Ū	0.010	1.0
75-15-0	Carbon disulfide	1.0	U	0.010	1.0
56-23-5	Carbon tetrachloride	1.0	U	0.010	1.0
108-90-7	Chlorobenzene	1.0	U	0.010	1.0
75-00-3	Chloroethane	1.0	U	0.010	1.0
67-66-3	Chloroform	1.0	U	0.010	1.0
74-87-3	Chloromethane	1.0	U	0.010	1.0
124-48-1	Dibromochloromethane	1.0	U	0.010	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	0.010	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	0.010	1.0
100-41-4	Ethylbenzene	1.0	U		

9/8/05

FORM I VOA

SKGW59-1014

Lab Name: GC/	AL.	Contract:					
ab Code: LA02	<u>4</u> Case No		SAS No.:	s	DG No.: <u>20</u>	5061509	
Astric (soil/water)	Water						
Sample wi/vol: _2	<u>ජ (g/ml) mL</u>		Lab Sample ID:	20506150907	·		_
(barriwol) :lava.			Lab File ID: 20	50623/U4218			_
% Moisture: not de			Date Collected:	06/15/05	Time	1310	_
GC Calumn: DB	-624-30M ID: 53	(mm)	Date Received:	06/16/05			
	ISV4		Date Analyzed:		Time	1230	-
	ex	(pt.)					-2'
	EC					fical Batch: 294122	-
	ION UNITS: ug/L		Analytical Method		<u></u>		
	COMPOUND		RESULT	Q	MDL	RL	
75-09-2	Mathylane chloride		D. C. D. 659	11	0.010	2.0	่⊒น
100-42-5	Styrene		10	U	0.010	1.0	╗`
127-18-4	Tetrachloroethene		10	U	0.010	1.0	
108-88-3	Toluene		10	U	0.010	1.0	
79-01-6	Trichloroethene		• 0	U	0.010	1.0	
75-01-4	Vinyl chloride		• 0	U	0.010	1.0	
1330,20.7	Wilson (Intel)		• •	11	0.040	1.0	

7/8/25

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	
SKGW59-1014	

Lab Name: GCAL	Contract:				
Lab Code: LA024 Case No.:		SAS No.:		SDG No.: 20	5061509
Matrix: Water		Lab Sample ID:	2050615090	7	
Sample wt/vol: Units:		Lab File ID: 20	50623/U4218		
Level: (low/med)		Date Collected:	06/15/05	Time:	1310
% Moisture: not dec.		Date Received:	06/16/05		
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05	Time:	1230
Instrument ID: MSV4		Dilution Factor:	1	Analyst	: RSP
Soil Extract Volume:	(µL)				
Soil Aliquot Volume:	(µL)				
Number TICs Found: 1					
CONCENTRATION UNITS:					
CAS NO. COMPOUND		RT	EST.	CONC.	Q
1 . 1823-52-5 2-Oxetanone, 4,4-dimethyl-		1.957	,	947	

SAMPLE NO.

SKGW61-1014	

Lab Name: GCAL	Contract:					
Lab Code: LA024	Case No.:	SAS No.:	SDX	3 No.: 205061	509	
Matric (soil/water)	Water					
Sample wi/vol: 25	(g/ml) mL	Lab Sample ID:	20506150909	·····		
Level: (low/med)		Lab File ID: 20	50623/U4220			
% Moisture: not dec		Date Collected:	06/15/05	Time: 14	M5	
GC Column: DB-6	124-30M ID: .53 (mm)	Date Received:	06/16/05			
Instrument ID: MS	5V4	Date Analyzed:	06/23/05	Time: 13	<u></u>	
Soil Extract Volume:	(µL)	Dilution Factor:	1	Anelyst:	RSP	
Sail Aliquot Valume					Batch: 294122	
-		Analytical Metho			<u></u>	
CONCENTRATIO	IN UNITS: Ug/L	•				
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
71-65-6	1,1,1-Trichlorosthene	1 0	U	0.010	1.0	٦
79-34-5	1,1,2,2-Tetrachiorosthane	10	U	0.010	1.0	┨ .
79-00-5	1,1,2-Trichlorosthere	1.0	U	0.010	1.0	٦.
75-34-3	1,1-Dichlorosthane	1.0	U	0.010	1.0	7
75-35-4	1,1-Dichloroethene	1.3	U	0.010	1.0	7
120-82-1	1,2,4-Trichlorobenzene	• 5	U	0.010	1.0	┫
106-93-4	1,2-Dibromosthene	1.3	U	0.010	1.0	ヿ
95-50-1	1,2-Dichlorobenzene	1.0	U	0.010	1.0	┪
107-06-2	1,2-Dichloroethene	1.3	U	0.010	1.0	7
540-59-0	1,2-Dichloroethene	1.0	- u	0.010	1.0	┪ .
78-87-5	1,2-Dichloropropene	1)	 	0.010	1.0	1
541-73-1	1,3-Dichloroberzene	1.7	- - - - - - - - - - 	0.010	1.0	\dashv
106-46-7	1,4-Dichlorobenzene	10		0.010	1.0	┪
78-93-3	2-Butanone	5.0	- i -	0.010	5.0	R
591-78-6	2-Heranone	5.0		0.010	5.0	⊣"`
108-10-1	4-Methyl-2-pentanone	5.0	- i -	0.010	5.0	\dashv
67-64-1	Actions	5 0		0.010	5.0	่ ผ
71-43-2	Benzene	10	- [0.010	1.0	⊣"
75-27-4	Bromodichloromethane			0.010	1.0	-
75-25-2	Bramafarm	1.0		0.010	1.0	-
74-83-9	Brumomethene	• :	U U	0.010	1.0	-
75-15-0	Carbon disulfide	1.0		0.010	1.0	_
58-23-5	Carbon tetrachloride	1:	- 	0.010	1.0	- -
108-90-7	Chlorobenzene	1.2	 -	0.010	1.0	
75-00-3		1.2		0.010		_
	Chlorosthene Chloroform				1.0	_
67-66-3 74-87-3			U	0.010	1.0	_
	Chloromethane		U	0.010	1.0	_
124-48-1	Dibromochioromethane	1 (<u> </u>	0.010	1.0	_
10061-01-5	cis-1,3-Dichloropropene	1:	U	0.010	1.0	_
10061-02-6	trans-1,3-Dichloropropene	1;	Ü	0.010	1.0	_
100-41-4	Ethylbenzene	10	Ų	0.010	1.0	

ر معالم

FORM I VOA

SAMPL	E NO
-------	------

SKGW61-1014

Lab Name: GCAL C	Contract:				
Lab Code: LA024 Case No.:		SAS No.:	SI	OG No.: 205061	1509
Matrix: (soil/water) Water		-			
Sample wt/vol: 25 (g/ml) mL		Lab Sample ID:	20506150909		
Level: (low/med)		Lab File ID: 20	50623/U4220	······································	
% Moisture: not dec.		Date Collected:	06/15/05	Time: _14	445
GC Column: DB-624-30M ID: .53	(mm)	Date Received:	06/16/05		
Instrument ID: MSV4		Date Analyzed:	06/23/05	Time: _13	319
Soil Extract Volume:	(µL)	Dilution Factor:	1	Analyst:	RSP
Soil Aliquot Volume:				Analytical	Batch: 294122
CONCENTRATION UNITS: ug/L		Analytical Method	: OLCO 2.1		·
CAS NO. COMPOUND		RESULT	Q	MDL	RL
75-09-2 Methylene chloride		2.0	U	0.010	2.0
100-42-5 Styrene		1.0	Ü	0.010	1.0
127-18-4 Tetrachloroethene		1.0	U	0.010	1.0
108-88-3 Toluene		1.0	U	0.010	1.0
79-01-6 Trichloroethene	,	1.0	U	0.010	1.0
75-01-4 Vinyl chloride		1.0	U	0.010	1.0
1330-20-7 Xviene (total)		10	1 0 1	0.010	1.0

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.

SKGW61-1014

Lab Name: GCAL Contract: Case No.: SAS No.: SDG No.: 205061509 Lab Code: LA024 Matric Water Lab Sample ID: 20506150909 Sample wt/vol: Units: Lab File ID: 2050623/U4220 Time: 1445 Level: (low/med) Date Collected: 06/15/05 Date Received: 06/16/05 % Moisture: not dec. GC Column: DB-624-30M ID: .53 (mm) Date Analyzed: 06/23/05 Time: 1319 Instrument ID: MSV4 Dilution Factor: 1 Analyst: RJO Soil Extract Volume: _____ (µL) Soil Aliquot Volume: (µL) Number TICs Found: 0 **CONCENTRATION UNITS:** CAS NO. COMPOUND RT EST. CONC. Q

No tics detected

SAMPLE	NO
--------	----

SKGW64-1014

Lab Name: GC/	AL Contract:				
ab Code: LA02	24 Case No.:	SAS No.:		SDG No.: 2050615	609
latrix: (soil/water)	Water				
ample wt/vol:	25 (g/ml) mL	Lab Sample ID:	2050615091	0	
evel: (low/med)		Lab File ID: 20	50623/U4223		
•		Date Collected:		Time: 00	15
	9C.	•		Time: <u>09</u> -	N
SC Column: DB	-624-30M ID: _53 (mm)	Date Received:	08/16/05		
nstrument ID: N	1SV4	Date Analyzed:	zed: 06/23/05 Time: 1458		58
ioil Extract Volum	ne: (µL)	Dilution Factor:	1	Analyst:	RSP
ioil Aliquot Volum	e: (μL)				Batch: 294122
		Analytical Method	_		
CONCENTRAT	ION UNITS: ug/L	raialydoa Modioc	. 0000 2.1	· · · · · · · · · · · · · · · · · · ·	
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
71-55-6	1,1,1-Trichloroethane	1.0	T U	0.010	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	0.010	1.0
79-00-5	1,1,2-Trichloroethane	1.0	U	0.010	1.0
75-34-3	1,1-Dichloroethane	1.0	U	0.010	1.0
75-35-4	1,1-Dichloroethene	1.0	U	0.010	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	0.010	1.0
106-93-4	1,2-Dibromoethane	1.0	U	0.010	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	0.010	1.0
107-06-2	1,2-Dichloroethane	1.0	υ	0.010	1.0
540-59-0	1,2-Dichloroethene	1.0	U	0.010	1.0
78-87-5	1,2-Dichloropropane	1.0	U	0.010	1.0
541-73-1	1,3-Dichlorobenzene	1.0	U	0.010	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	0.010	1.0
78-93-3	2-Butanone	5.0	U	0.010	5.0
591-78-6	2-Hexanone	5.0	U	0.010	5.0
108-10-1	4-Methyl-2-pentanone	5.0	U	0.010	5.0
67-64-1	Acetone	5.0	Ū	0.010	5.0
71-43-2	Benzene	1.0	U	0.010	1.0
75-27-4	Bromodichloromethane	1.0	U	0.010	1.0
75-25-2	Bromoform	1.0	υ	0.010	1.0
74-83-9	Bromomethane	1.0	U	0.010	1.0
75-15-0	Carbon disulfide	1.0	U	0.010	1.0
56-23-5	Carbon tetrachloride	1.0	U	0.010	1.0
108-90-7	Chlorobenzene	1.0	Ü	0.010	1.0
75-00-3	Chloroethane	1.0	U	0.010	1.0
67-66-3	Chloroform	1.0	U	0.010	1.0
74-87-3	Chloromethane	1.0	U	0.010	1.0
124-48-1	Dibromochloromethane	1.0	U	0.010	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	0.010	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	0.010	1.0
100-41-4	Ethylbenzene	1.0	υ	0.010	1.0

9/8/05"

FORM I VOA

CAL	PIF	NO.
3/4		I NU.

SKGW64-1014

Lab Name: GC	AL	Contract:			_	
Lab Code: LAC	24 Case No:		SAS No.:	SDG P	lo.: 20508	1509
Astric (scil/water)	Water					
Sample wil/cit	25 (g/ml) <u>mL</u>		Lab Sample ID:	20506150910		
evet: (low/med)			Lab File ID: 205	50623/U4223		
	BC		Date Collected:	06/15/05	Time: 0	945
	3-824-30M ID:			06/16/05		
nstrument ID: A	45V4		Date Analyzed:	06/23/05	Time: 1	458
			Dilution Factor:	1	Analyst	RSP
	ne:				•	
	TON UNITS: Ug/L		Analytical Method	I: OLCO 2.1		
CAS NO.	COMPOUND		RESULT	Q	MDL	RL
75-09-2	Mathylene chloride		2.0	U	0.010	2.0
100-42-5	Styrene		1.0	υ	0.010	1.0
127-18-4	Tetrachloroethene		1.0	U	0.010	1.0
106-86-3	Taluene		10	U	0.010	1.0
79-01-6	Trichloroethene		. 0	U	0.010	1.0
75-01-4	Vinyl chloride		• 0	Ü	0.010	1.0
1220 20.7	Mileso Redail		4.3	1 11	0.040	10

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	
SKGW64-1014	

Lab Name: GCAL	_Contract:	·	L.,	· · · -	
Lab Code: LA024 Case No.:		SAS No.:	SD	G No.: 205	5061509
Matrix: Water		Lab Sample ID:	20506150910		
Sample wt/vol: Units:		Lab File ID: 20	50623/U4223	····	
Level: (low/med)		Date Collected:	06/15/05	Time:	0945
% Moisture: not dec.	·	Date Received:	06/16/05		
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05	Time:	1458
Instrument ID: MSV4	·····	Dilution Factor:	1	Analyst	: RSP
Soil Extract Volume:	(µL)				
Soil Aliquot Volume:	(µL)				
Number TICs Found: 1 CONCENTRATION UNITS: CAS NO. COMPOUND		RT	EST. CO	ONC	0
					Q
1 . 110-62-3 Unknown		1.961	6.79	1	

SAMPLE NO.

S	KGW63-1014	

Lab Name: GC/	VL Contract:				
ab Code: LA02	M4 Case No:	SAS No.:	SD	G No.: 205061	509
Matrix (soll/water)	Water				
Sample w6/volt 🙎	25 (g/ml) mL	Lab Sample ID:	20506150911		
.evet: (low/med)		Lab File ID: 205	50623/U4 22 5		
6 Moisture: not de		Date Collected:	08/15/06	Time: 10	25
e monther not or		Date Condition.	00/13/05		
SC Column: DB	1624-30M ID53 (mm)	Date Received:	06/16/05		
nstrument ID: N	ISV4	Date Analyzed:	06/23/05	Time: 15	47
Soil Extract Volum	#c(μL)	Dilution Factor:	1	Analyst:	RSP
Soil Aliquot Volum		Prep Batch:			Batch: 294122
•		Analytical Method	: OLCO 2.1		
CONCENTRATI	ION UNITS: ug/L				
CAS NO.	COMPOUND	RESULT	Q	MDL	RL.
71-55-6	1,1,1-Trichloroethane	10	T U T	0.010	1.0
79-34-5	1,1,2,2-Tetrachlorosthane	1 3	U	0.010	1.0
79-00-5	1,1,2-Trichloroethane	1.3	U	0.010	1.0
75-34-3	1,1-Dichloroethene	13	U	0.010	1.0
75-35-4	1,1-Dichloroethene	• 3	Ü	0.010	1.0
120-82-1	1,2,4-Trichlorobenzene	- 7	U	0.010	1.0
106-93-4	1,2-Dibromosthane	1.0	T U	0.010	1.0
95-50-1	1,2-Dichlorobenzene	1.0	U	0.010	1.0
107-08-2	1,2-Dichloroethene	10	 	0.010	1.0
540-59-0	1,2-Dichloroethene	1.0	 	0.010	1.0
78-87-5	1,2-Dichloropropane		1 0 1	0.010	1.0
541-73-1	1,3-Dichlorobenzene	1:	1 0	0.010	1.0
108-46-7	1.4-Dichlorobenzene	1.0	1 0	0.010	1.0
78-93-3	2-Butanone	5 C	U	0.010	5.0
591-78-6	2-Hasanone	5 0	· · ·	0.010	5.0
108-10-1	4-Methyl-2-pentanone	5 0	- u	0.010	5.0
67-64-1	Acetone	5.0	U	0.010	5.0
71-43-2	Benzane	0.13	<u>_</u>	0.010	1.0
75-27-4	Bromodichloromethene	10	- Ū	0.010	1.0
75-25-2	Bromoform	1.0	U	0.010	1.0
74-83-0	Bramamethene	1:	- 	0.010	1.0
75-15-0	Carbon disulfide	10	_	0.010	1.0
56-23-5	Carbon Istrachloride	1:	- -	0.010	1.0
108-90-7	Chlorobenzene	1.0	- U	0.010	1.0
75-00-3	Chloroshene	1.5	<u>_</u>	0.010	1.0
67-66-3	Chloroform			0.010	1.0
74-87-3			<u>U</u>	0.010	
124-48-1	Childramethere Dibramochiloromethere	1 5	<u>U</u>	0.010	1.0
					1.0
10061-01-5	cis-1,3-Dichloropropere	1.5	LI.	0.010	1.0
10061-02-6	trans-1,3-Dichloropropene	1.5	L!	0.010	1.0
100-41-4	Ethylbenzene	• •	<u> </u>	0.010	1.0

9/8/05

SAMPL	E NO
-------	------

SKGW63-1014	

Lab Name: GCAL Co	ntract:				
Lab Code: LA024 Case No.:	· ;	SAS No.:	SI	OG No.: 205	061509
Matrix: (soil/water) Water					
Sample wt/vol: 25 (g/ml) mL		Lab Sample ID:	20506150911		
Level: (low/med)		Lab File ID: 205	0623/U4225		
% Moisture: not dec.		Date Collected:	06/15/05	Time:	1035
GC Column: DB-624-30M ID: .53	(mm)	Date Received:	06/16/05		
Instrument ID: MSV4		Date Analyzed:	06/23/05	Time:	1547
Soil Extract Volume: (μL) Soil Aliquot Volume: (μL)				Analyst: RSP Analytical Batch: 294122	
CAS NO. COMPOUND		RESULT	Q	MDL	RL.
75-09-2 Methylene chloride		Ð.0 .0.035°	J	0.010	2.0
100-42-5 Styrene		1.0	U	0.010	1.0
127-18-4 Tetrachloroethene		1.0	U	0.010	1.0
108-88-3 Toluene		1.0	U	0.010	1.0
79-01-6 Trichloroethene		1.0	U	0.010	1.0
75-01-4 Vinyl chloride		1.0	U	0.010	1.0
1330-20-7 Xviene (total)		1.0	Ü	0.010	1.0

918/0 =

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

01/01/00 4044	
SKGW63-1014	
0101100-1014	

Lab Name: GCAL (Contract:			
Lab Code: LA024 Case No.:		SAS No.:	SDG No.: 2	05061509
Matric Water		Lab Sample ID:	20506150911	
Sample wt/vol: Units:	····	Lab File ID: 205	50623/U4225	
Level: (low/med)		Date Collected:	06/15/05 Time:	1035
% Moisture: not dec.		Date Received:	06/16/05	
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05 Time:	1547
Instrument ID: MSV4	<u></u>	Dilution Factor:	1 Analys	st: RSP
Soil Extract Volume:	_ (µL)			
Soil Aliquot Volume:	(µL)			
Number TICs Found: 4 CONCENTRATION UNITS:				
CAS NO. COMPOUND		RT	EST. CONC.	Q
1 . 2919-23-5 Unknown		1.966	6.34	
2. 78-78-4 Unknown		2.388	1.27	
3. 109-66-0 Unknown		2.616	.853	

2.845

1.53

Unknown

4. 60-29-7

SAMPLE NO.

	2A-1014

_ab Name: _GC/	AL Contract:				
ab Code: LA02		SAS No.:	s	DG No.: 20506150	9
latrix: (soil/water)		Late Occupie ID:	00500450046		
ample wt/vol: _2	25 (g/ml) <u>mL</u>	Lab Sample ID:	20506150912	!	
evel: (low/med)		Lab File ID: 205	0623/U4226		
6 Moisture: not de	эс.	Date Collected:	06/15/05	Time: 1130	
	1-624-30M ID: .53 (mm)	Date Received:	06/16/05		
		•		T 1	
nstrument ID: N	1SV4	Date Analyzed:	06/23/05	Time: 1611	
oil Extract Volum	ne: (µL)	Dilution Factor:	1	Analyst: R	SP
oil Aliquot Volum	ne: (µL)	Prep Batch:		Analytical Ba	tch: 294122
CONCENTRAT	ION UNITS: ug/L	Analytical Method:	OLCO 2.1		
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
71-55-6	1,1,1-Trichloroethane	1.0	T 0 T	0.010 T	1.0
79-34-5	1,1,2,2-Tetrachloroethane	1.0	1 0	0.010	1.0
79-00-5	1,1,2-Trichloroethane	1.0	 	0.010	1.0
75-34-3	1,1-Dichloroethane	1.0	1 i 1	0.010	1.0
75-35-4	1,1-Dichloroethene	1.0	1 0	0.010	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	 	0.010	1.0
106-93-4	1,2-Dibromoethane	1.0	 	0.010	1.0
95-50-1	1,2-Dichlorobenzene	1.0	 	0.010	1.0
107-06-2	1,2-Dichloroethane	1.0	Ü	0.010	1.0
540-59-0	1,2-Dichloroethene	1.0	U	0.010	1.0
78-87-5	1,2-Dichloropropane	1.0	 	0.010	1.0
541-73-1	1,3-Dichlorobenzene	1.0	1 0 1	0.010	1.0
106-46-7	1,4-Dichlorobenzene	1.0	U	0.010	1.0
78-93-3	2-Butanone	5.0	U	0.010	5.0
591-78-6	2-Hexanone	5.0	U	0.010	5.0
108-10-1	4-Methyl-2-pentanone	5.0	U	0.010	5.0
67-64-1	Acetone	5.0	Ü	0.010	5.0
71-43-2	Benzene	1.0	U	0.010	1.0
75-27-4	Bromodichloromethane	1.0	U	0.010	1.0
75-25-2	Bromoform	1.0	U	0.010	1.0
74-83-9	Bromomethane	1.0	U	0.010	1.0
75-15-0	Carbon disulfide	1.0	U	0.010	1.0
56-23-5	Carbon tetrachioride	1.0	U	0.010	1.0
108-90-7	Chlorobenzene	1.0	U	0.010	1.0
75-00-3	Chloroethane	1.0	U	0.010	1.0
67-66-3	Chloroform	1.0	U	0.010	1.0
74-87-3	Chloromethane	1.0	U	0.010	1.0
124-48-1	Dibromochloromethane	1.0	U	0.010	1.0
10061-01-5	cis-1,3-Dichloropropene	1.0	U	0.010	1.0
10061-02-6	trans-1,3-Dichloropropene	1.0	U	0.010	1.0
100-41-4	Ethylbenzene	1.0	U	0.010	1.0

7/8/05

FORM I VOA

SAMPLE NO.

SKGW62A-1014

Lab Name: GCAL	Contract:		·		
ab Code: LA024 Case	No:	SAS No.:	SD	G No.: 205061	509
Matric (scil/water) Water		-			
Sample withot: 25 (g/ml)	mL	Lab Samole ID:	20506150912		
evel: (low/med)		Lab File ID: 205	50623/U4 226		
K Maisture: not dec.		Date Collected:	06/15/05	Time: _11	30
GC Calumri: DB-624-30M		Date Received:	06/16/05		
nstrument ID: MSV4		Date Analyzed:	06/23/05	Time: _16	11
Soil Extract Volume: (µL)		.) Dilution Factor: 1	1	Analyst: RSP	
Soil Aliquot Valume:	(µL)	Prep Batch:		Analytical	Batch: 294122
CONCENTRATION UNITS: ug/L		Analytical Method	OLCO 2.1		
CAS NO. COMPOUND		RESULT	Q	MDL	RL
75-09-2 Mothylane chlorid	le	2.0	U	0.010	2.0
100-42-5 Styrene		1.0	U	0.010	1.0
127-18-4 Tetrachloroethen	·	1.0	U	0.010	1.0
108-88-3 Toluene		10	U	0.010	1.0
79-01-6 Trichlorosthene		1.0	U	0.010	1.0
75-01-4 Vinyl chloride			U	0.010	1.0
1330-20-7 Xylane (total)		1.0	Ü	0.010	1.0

1E **VOLATILE ORGANICS ANALYSIS DATA SHEET** TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	
------------	--

	\-101 4	

Lab Name: GCAL	Contract:			•
Lab Code: LA024 Case No.:		SAS No.:		SDG No.: 205061509
Matrix: Water		Lab Sample ID:	20506150912	
Sample wt/vol: Units:		Lab File ID: 205	50623/U4226	
Level: (low/med)		Date Collected:	06/15/05	Time: 1130
% Moisture: not dec.		Date Received:	06/16/05	
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05	Time: 1611
Instrument ID: MSV4		Dilution Factor:	1	Analyst: RSP
Soil Extract Volume:	(μL)			
Soll Aliquot Volume:	(µL)			

Number TICs Found: 3

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	RT	EST. CONC.	Q
1.	2919-23-5	Unknown	1.965	6.15	
2.	2919-23-5	Unknown	2.387	.834	
3.	109-66-0	Unknown	2.621	1.15	

SAMPLE NO.

SKGW60-1014

Lab Name: GCAL	Contract:				
ab Code: LA024			SI	DG No.: 20506	509
Matric (soil/water) Water	. 4. 2	-	00500450004		
Sample withol: 25 (g	ymi) <u>mL</u>	Lab Sample ID:	20506150921	··-	
.evel: (lowlmed)		Lab File ID: 20	050623/U4228		
K Moisture: not dec.		Date Collected:	06/16/05	Time: _1:	335
3C Calumn: DB-624-30M	ID: .53 (mr	m) Date Received:	06/17/05		
nstrument ID: MSV4			06/23/05	Time: 10	559
Soil Extract Volume:	(1)	-		Analyst	
Sail Aliquat Valume:	{ µ	L) Prep Batch:		Analyscal	Batch: 294122
CONCENTRATION UNITS:	ugL	Analytical Metho	od: <u>OLCO 2.1</u>		
CAS NO. COMPO	UND	RESULT	Q	MDL	RL
71-55-8 1,1,1-Tricl	hiorosthene	1.0	U	0.010	1.0
	strachloroethane	1.0	U	0.010	1.0
79-00-5 1,1,2-Trick	hioroethene	10	 	0.010	1.0
75-34-3 1,1-Dichlo		• 3	U	0.010	1.0
75-35-4 1,1-Dichlo	roshene	1 3	υ	0.010	1.0
120-82-1 1.2.4-Trick	hiorobenzene	• 5	U U	0.010	1.0
106-93-4 1,2-Dibror	moethene	1.0	U	0.010	1.0
	orobenzene		U	0.010	1.0
107-06-2 1,2-Dichlo	prosthene	. 9	U	0.010	1.0
540-59-0 1,2-Dichlo	roethene	.0	Ü	0.010	1.0
78-87-5 1,2-Dichlo	propropane	•.5	ט	0.010	1.0
541-73-1 1,3-Dichlo	robenzene	- 5	U U	0.010	1.0
106-46-7 1,4-Dichlo	probenzene	. 0	υ	0.010	1.0
78-93-3 2-Butanon	10	5.0	U I	0.010	5.0
591-78-6 2-Hexanor	ne	5.0	U	0.010	5.0
108-10-1 4-Methyl-2	2-pentanone	5.0	U	0.010	5.0
67-64-1 Acetone		5.0	U	0.010	5.0
71-43-2 Benzene	··	0.383	J	0.010	1.0
75-27-4 Bromodic	hioromethane	• 0	U	0.010	1.0
75-25-2 Bromoform	n	1.0	U	0.010	1.0
74-83-9 Bromomet	thene	1.3	U	0.010	1.0
75-15-0 Carbon de		10	U	0.010	1.0
	trachloride	- 0	Ü	0.010	1.0
108-90-7 Chloroben		• 5	Ü	0.010	1.0
75-00-3 Chiloroeth		. 3	U	0.010	1.0
67-86-3 Chloroforn		.0	U	0.010	1.0
74-87-3 Chioromei		• 0	Ü	0.010	1.0
	hiaramethene		l ŭ l	0.010	1.0
					<u> </u>
110061-01-5 lcis-1.3-Dia	chloropropere	• 0	U	0.010	1.0
	chlarapropene Dichlarapropene	• 0	U	0.010 0.010	1.0

عنه عنه

SAMPLE	NO.
CKCMED	1014

Lab Name: GCAL	Cor	ntract:					
Lab Code: LA024 (Case No.:		SAS No.:	S	DG No.: 20506	1509	
Matrix: (soil/water) Water							
Sample wt/vol: 25 (g/m	il) <u>mL</u>		Lab Sample ID:	2050615092			
Level: (low/med)			Lab File ID: 205	0623/U4228			
At Martin and Jan			Date Collected:	06/16/05	Time: _1	1335	
GC Column: DB-624-30M	ID: <u>.53</u>	(mm)	Date Received:	06/17/05			
Instrument ID: MSV4			Date Analyzed:	06/23/05	Time: _1	1659	
Soil Extract Volume:		(µL)	Dilution Factor:	1	Analyst:	RSP	
Soil Aliquot Volume:		(µL)	Prep Batch:		Analytica	Batch: 294122	
CONCENTRATION UNITS: U	ıg/L		Analytical Method	: OLCO 2.1	······		
CAS NO. COMPOUN	ID		RESULT	Q	MDL	RL	
75-09-2 Methylene ch	nloride		2.0000	J	0.010	2.0	Ju
100-42-5 Styrene			1.0	U	0.010	1.0	٦ ` `
127-18-4 Tetrachloroe	thene		1.0	U	0.010	1.0	
108-88-3 Toluene			1.0	U	0.010	1.0	┑
79-01-6 Trichloroethe	ene		1.0	U	0.010	1.0	
75-01-4 Vinyl chloride	•		1.0	U	0.010	1.0	┪
1330-20-7 Xylene (total)			1.0	1 0 1	0.010	1.0	╗

9/8/25

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	
SKGW60-1014	

Lab Name: GCAL	_Contract:		L	
Lab Code: LA024 Case No.:		SAS No.:	SDG1	No.: 205061509
Metric Water		Lab Sample ID:	20506150821	
Sample wt/vol: Units:		Lab File ID: 20	50623/U4228	براجين المساورين الم
Level: (low/med)		Date Collected:	06/16/05	Time: 1335
% Moisture: not dec.		Date Received:	06/17/05	
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/23/05	Time: <u>1659</u>
Instrument ID: MSV4		Dilution Factor.	1	Analyst: RSP
Soil Extract Volume:	(µL)			
Soil Aliquot Volume:	(µL)			
Number TICs Found: 0				
CONCENTRATION UNITS:			507 001	60
CAS NO. COMPOUND		RT	EST. COA	IC. Q
1. No tics detected			1	

SAMPLE	NO.
--------	-----

 SKGW58-1014	_

Lab Name: GC	AL Contr	act:					
Lab Code: LA0	24 Case No.:	,	SAS No.:	s	SDG No.: 205061	509	
Matrix (soil/water)) Water						
Sample wt/vol:	25 (g/ml) mL		Lab Sample ID:	20506150922	2		
Level: (low/med)			Lab File ID: 205	50622/U4204			
% Moisture: not d			Date Collected:	06/16/05	Time: 10	005	
GC Column: DE	3-624-30M ID: .53	(mm)	Date Received:	06/17/05			
Instrument ID: N			Date Analyzed:	06/22/05	Time: 17		
Soil Extract Volum		(µL)	•	1			
Soil Aliquot Volum		•	Prep Batch:	···		Batch: 294018	
Soil Ailquot voiult	IG.	(µL)	•			Dalcii, 294016	_
CONCENTRAT	TION UNITS: ug/L		Analytical Method	: OLCO 2.1			
CAS NO.	COMPOUND		RESULT	Q	MDL	RL	
71-55-6	1,1,1-Trichloroethane		1.0	T U T	0.010	1.0	٦
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U	0.010	1.0	7
79-00-5	1,1,2-Trichloroethane		1.0	U	0.010	1.0	1
75-34-3	1,1-Dichloroethane		1.0	U	0.010	1.0	7
75-35-4	1,1-Dichloroethene		1.0	U	0.010	1.0	7
120-82-1	1,2,4-Trichlorobenzene		1.0	U	0.010	1.0	7
106-93-4	1,2-Dibromoethane		1.0	U	0.010	1.0	7
95-50-1	1,2-Dichlorobenzene		1.0	U	0.010	1.0	7
107-06-2	1,2-Dichloroethane		1.0	U	0.010	1.0	7
540-59-0	1,2-Dichloroethene		1.0	U	0.010	1.0	7
78-87-5	1,2-Dichloropropane		1.0	U	0.010	1.0	7
541-73-1	1,3-Dichlorobenzene		1.0	J U	0.010	1.0	7
106-46-7	1,4-Dichlorobenzene		1.0	U	0.010	1.0	7
78-93-3	2-Butanone		5.0	U	0.010	5.0	78
591-78-6	2-Hexanone		5.0	U	0.010	5.0	٦ ٔ
108-10-1	4-Methyl-2-pentanone		5.0	U	0.010	5.0	7
67-64-1	Acetone		5.0	U	0.010	5.0	78
71-43-2	Benzene		1.0	U	0.010	1.0]
75-27-4	Bromodichloromethane		1.0	U	0.010	1.0]
75-25-2	Bromoform		1.0	U	0.010	1.0]
74-83-9	Bromomethane		1.0	U	0.010	1.0	_
75-15-0	Carbon disulfide		1.0	U	0.010	1.0]
56-23-5	Carbon tetrachloride		1.0	U	0.010	1.0	
108-90-7	Chlorobenzene		1.0	U	0.010	1.0	_
75-00-3	Chloroethane		1.0	U	0.010	1.0	_
67-66-3	Chloroform		1.0	U	0.010	1.0	
74-87-3	Chloromethane		1.0	U	0.010	1.0	
124-48-1	Dibromochioromethane		1.0	U	0.010	1.0	
10061-01-5	cls-1,3-Dichloropropene		1.0	U	0.010	1.0	_
10061-02-6	trans-1,3-Dichloropropene		1.0	U	0.010	1.0	
100-41-4	Ethylbenzene		1.0	l ll l	0.010	1.0	-Ţ

9/8/05

FORM I VOA

SAMP	1 F NO
~	UL 140

SKGW58-1014

Lab Name: GCAL	co	ntract:				
Lab Code: LA024	Case No		SAS No.:	SDC	3 No.: 205061	509
Matric (soll/water)	Water					
Sample wit/volt 25	(g/ml) mL		Lab Sample ID:	20506150922		
evel: (low/med) _			Lab File ID: 205	0622/1/4204		
6 Maisture: not dec			Date Collected:	06/16/05	Time: _10	005
C Column: DB-6	24-30M ID: .53	(mm)	Date Received:	06/17/05		
nstrument ID: MS	V4		Date Analyzed:	06/22/05	Time: _17	714
ioil Extract Volume:		(µL)	Dilution Factor:	1	Analyst:	RSP
iail Aliquat Valume:		(µL)	Prep Batch:		Analytical	Batch: <u>294018</u>
CONCENTRATIO	N UNITS: ug/L		Analytical Method	OLCO 2.1		
CAS NO.	COMPOUND		RESULT	Q	MDL	RL
75-09-2	Mathylane chloride		20	U	0.010	2.0
100-42-5	Styrene		. 3	U	0.010	1.0
127-18-4	Tetrachloroethene		• 5	U	0.010	1.0
108-88-3	Taluane		٠ ٦	U	0.010	1.0
79-01-6	Trichloroethene		- 0	U	0.010	1.0
75-01-4	Vinyl chlaride		. 0	U	0.010	1.0
1222 20 7	M 4 A A		1.0	1	0.040	1 40

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO. SKGW58-1014

Lab Name: GCAL	Contract:				
Lab Code: LA024 Case No.:		SAS No.:	SDG	No.: 205	5061509
Matrix: Water	/	Lab Sample ID:	20506150922		
Sample wt/vol: Units:		Lab File ID: 20	50622/U4204	······································	
Level: (low/med)		Date Collected:	06/16/05	Time:	1005
% Moisture: not dec.		Date Received:	06/17/05		
GC Column: DB-624-30M ID: .53	(mm)	Date Analyzed:	06/22/05	Time:	1714
Instrument ID: MSV4		Dilution Factor:	1	Analyst	RSP
Soil Extract Volume:	(µL)				
Soil Aliquot Volume:	(μL)				
Number TICs Found: 1 CONCENTRATION UNITS:					
CAS NO. COMPOUND		RT	EST. COM	VC.	Q
1. 1823-52-5 Unknown		1.948	4.15		

Lab Name: GCAL	Sample ID: SKGW06	R-1014	
Lab Code: LA024 Case No.:	Contract:		
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/	80323	-
Matrix Water	Lab Sample ID: 2050	5150901	
Sample wt/vol: 1000 Units: mL	Date Collected: 06/14	/05 Time: 15	15
Level: (low/med) LOW	Date Received: 06/15	<i>1</i> 05	
% Moisture: decanted: (Y'N)	Date Extracted: 06/20	<i>1</i> 05	
GC Column: DB-5MS-30M ID: _25 (mm)	Date Analyzed: 07/14	/05 Time: 12	41
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1	Analyst	JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.	2 SVOA	
	Analytical Method: Of	MO 4.2	
GPC Cleanup: (Y/N) N pH:	Instrument ID: MSSV3		
CONCENTRATION UNITS: ug/L	Prep Batch: 293939		295505
CAS NO. COMPOUND	RESULT Q	MDL	RL.
CAS NO. COMPOUND	KESULI Q	MUL	
95-95-4 2,4,5-Trichlorophenol	10.0 U	0.010	10.0
88-06-2 2,4,6-Trichlorophenol	•0.0 U	0.010	10.0
120-83-2 2,4-Dichlaraphenol	10.0 U	0.010	10.0
51-28-5 2,4-Dinitrophenol	25.0 U	0.010	25.0
121-14-2 2,4-Dinitrotoluene	10.0 U	0.010	10.0
606-20-2 2,6-Dinitrotoluene	19.0 U	0.010	10.0
91-58-7 2-Chloronaphthalene	10.0 U	0.010	10.0
95-57-8 2-Chlorophenol	10.0 U	0.010	10.0
91-57-6 2-Methylnaphthalene	10.C U	0.010	10.0
88-74-4 2-Nitroaniline	25 .0 U	0.010	25.0
88-75-5 2-Nitrophenol	10.C U	0.010	10.0
91-94-1 3,3'-Dichlorobenzid ne	1 0 .0 U	0.010	10.0
99-09-2 3-Nitroaniline	25.0 U	0.010	25.0
534-52-1 2-Methyl-4,6-din/trophenol	25.C U	0.010	25.0
59-50-7 4-Chloro-3-methytohenol	10.0 U	0.010	10.0
106-47-8 4-Chloroaniline	10.0 U	0.010	10.0
7005-72-3 4-Chlorophenyt-phenylether	10.0 U	0.010	10.0
106-44-5 4-Methylphenol :p-Cresol)	10.0 U	0.010	10.0
83-32-9 Acenaphthene	10 0 U	0.010	10.0
208-96-8 Acenaphthylene	10.0 U	0.010	10.0
120-12-7 Anthracene	:0.0 U	0.010	10.0
56-55-3 Benzo(a)anthracene	10.0 U	0.010	10.0
50-32-8 Benzo(a)pyrene	10.0 U	0.010	10.0
205-99-2 Benzo(b)fluoranthene	10.0	0.010	10.0
191-24-2 Benzo(g,h,i)pery:ene	1.02	0.010	10.0
207-08-9 Benzo(k)fluoranthene	10.0 U	0.010	10.0
111-91-1 Bis(2-Chloroethoxy)methane	10.0	0.010	10.0
111-44-4 Bis(2-Chloroethy) lether	10.0 U	0.010	10.0
108-60-1 bis(2-Chlorous peropyl)ether	10.0 U	0.010	10.0

Lab Name: GC	CAL	Sample ID:	SKGW06R-	1014		
Lab Code: LA0	024 Case No.:	Contract:				
SAS No.:	SDG No.: 205061509	Lab File ID: _2	2050714/B0	323		
Matrix: Water		Lab Sample II	D: <u>205061</u>	50901		
Sample wt/vol:	1000 Units: mL	Date Collected	d: 06/14/0	5 Time:	1515	
Level: (low/med)	LOW	Date Received	d: 06/15/0	5		
% Moisture:	decanted: (Y/N)	Date Extracted	d: 06/20/0	5		
GC Column: Di	B-5MS-30M ID: .25 (mm)	Date Analyzed	1: 07/14/0	5 Time	: 1241	
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor	: <u>1</u>	Analy	yst: JAR3	
	: (µL)	Prep Method:	OLM4.2 S	VOA		
	//N) N pH:	Analytical Met	hod: OLM	O 4.2		·····
		Instrument ID:	MSSV3			
CONCENTRATIO	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	itch: 295505	_
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	_
117-81-7	bis(2-ethylhexyl)phthalate	10.0546	JB	0.010	10.0	٦L
101-55-3	4-Bromophenyl-phenylether	10.0	U	0.010	10.0	٦ ٔ
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0	٦
86-74-8	Carbazole	10.0	U	0.010	10.0	1
218-01-9	Chrysene	10.0	U	0.010	10.0	1
84-74-2	Di-n-butylphthalate	10. CQ.878	JB	0.010	10.0	∃u
117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0	1 ~
53-70-3	Dibenz(a,h)anthracene	0.652	J	0.010	10.0	1
132-64-9	Dibenzofuran	10.0	U	0.010	10.0	1
84-66-2	Diethylphthalate	10.0	U	0.010	10.0	1
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0	1
105-67-9	2,4-Dimethylphenol	10.0	U	0.010	10.0	1
206-44-0	Fluoranthene	10.0	U	0.010	10.0	1
86-73-7	Fluorene	10.0	U	0.010	10.0	1
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0	1
87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0	1
77-47-4	Hexachlorocyclopentadiene	10.0	U	0.010	10.0	1
67-72-1	Hexachloroethane	10.0	U	0.010	10.0	1
193-39-5	Indeno(1,2,3-cd)pyrene	0.502	J	0.010	10.0	1
78-59-1	Isophorone	10.0	υ	0.010	10.0	1
91-20-3	Naphthalene	10.0	U	0.010	10.0	1
100-01-6	4-Nitroaniline	25.0	U	0.010	25.0	1
98-95-3	Nitrobenzene	10.0	U	0.010	10.0	1
100-02-7	4-Nitrophenol	25.0	U	0.010	25.0	1
87-86-5	Pentachlorophenol	25.0	C	0.010	25.0	1
85-01-8	Phenanthrene	10.0	U	0.010	10.0	1
108-95-2	Phenol	10.0	U	0.010	10.0	1
129-00-0	Pyrene	10.0	U	0.010	10.0	1
621 64 7	N Nitropo di p propulamino	10.0	11	0.010	10.0	1

سيم عوايه او

Lab Name: GCAL	Sample ID: SKGW06R-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.:	Lab File ID: 2050714/B0323
Matric Water	Lab Sample ID: 20506150901
Sample wt/vol: 1000 Units: mL	Date Collected: 06/14/05 Time: 1515
Level: (low/med) LOW	Date Received: 06/15/05
% Moisture: decanted: (Y N)	Date Extracted: 06/20/05
GC Column: <u>DB-5MS-30M</u> ID: <u>.25</u> (mm)	Date Analyzed: 07/14/05 Time: 1241
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW06R-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0323
Matrix: Water	Lab Sample ID: 20506150901
Sample wt/vol: Units:	Date Collected: 06/14/05 Time: 1515
Level: (low/med)	Date Received: 06/15/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1241
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
Number TICs Found: 1 CONCENTRATION UNITS:	Instrument ID: MSSV3
CAS NO. COMPOUND	RT EST. CONC. Q
1. 27554-26-3 1,2-Benzenedicarboxylic acid,	6.281 6.1

Lab Name: G	CAL	Sample ID: 5	SKGW07R-1	1014	
	024 Case No :	-			
	SDG No.: 205061509				.
			····		
Matric Water		Lab Sample ID	2050615	0902	
Sample wt/vol:	1000 Units: mL	Date Collected	: <u>06/14/05</u>	Time:	1555
Levet: (low/med) LOW	Date Received	: 06/15/05	i	
	decanted: (Y/N)	Date Extracted	: 06/20/05		
				i Time	· 1300
GC Column: D	IB-5MS-30M ID: _25 (mm)				
Concentrated Ex	ktract Volume: 1000 (µL)	Dilution Factor	: 1	Analy	st JAR3
Injection Volume	e: 1.0 (µL)	Prep Method:	OLM4.2 S	VOA	
	Y/N) N pH:	Analytical Meth	nod: OLM	042	
		Instrument ID:	MSSV3		
CONCENTRATI	ION UNITS: ug/L				
		Prep Batch:	293939	Analytical Ba	tch: 295505
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
95-95-4	2,4,5-Trichlorophenoi	10.0	U	0.010	10.0
88-06-2	2,4,6-Trichloropheno	10.0	U	0.010	10.0
120-83-2	2,4-Dichlorophenol	10.0	U	0.010	10.0
51-28-5	2,4-Dinitrophenol	25.0	U	0.010	25.0
121-14-2	2,4-Dinitrotoluene	10.0	U	0.010	10.0
606-20-2	2,6-Dinitrotoluene	10.0	U	0.010	10.0
91-58-7	2-Chloronaphthalene	10.0	U	0.010	10.0
95-57-8	2-Chlorophenol	10.0	U	0.010	10.0
91-57-6	2-Methylnaphthalene	10.0	U	0.010	10.0
88-74-4	2-Nitroaniline	25.0	U	0.010	25.0
88-75-5	2-Nitrophenol	10.0	U	0.010	10.0
91-94-1	3,3-Dichlorobenzidine	10.0	U	0.010	10.0
99-09-2	3-Nitroaniine	25.0	U	0.010	25.0
534-52-1	2-Methyl-4,6-dinitrophenol	25.0	U	0.010	25.0
59-50-7	4-Chloro-3-methylphenol	10.0	U	0.010	10.0
106-47-8	4-Chloroaniline	10.0	U	0.010	10.0
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	0.010	10.0
106-44-5	4-Methylphenol (p-Cresol)	10.0	Ü	0.010	10.0
83-32-9	Acenaphthene	10.0	Ü	0.010	10.0
208-96-8	Acenaphthylene	10.0	U	0.010	10.0
120-12-7	Anthracene	10.0	Ü	0.010	10.0
56-55-3	Benzo(a)anthracene	10.0	Ü	0.010	10.0
50-32-8	Benzo(a)pyrene	10.0	Ü	0.010	10.0
205-99-2	Benzo(b)fluoranthene	10.0	Ü	0.010	10.0
191-24-2	Benzo(g,h,i)perylene	10.5	U	0.010	10.0
207-08-9	Benzo(k)fluoranthene	10.0	U	0.010	10.0
207-06-9 111-91-1	Bis(2-Chloroethoxy)methane	16.0	U	0.010	10.0
111-44-4	 	10.0			
	Bis(2-Chloroethyl)ether		U	0.010	10.0
108-60-1	bis(2-Chloroisoprop : lether	10.0 l	U	0.010	10.0

Lab Name: GC	CAL	Sample ID:	SKGW07R-	1014		
Lab Code: LAC	Case No.:	Contract:				
SAS No.:	SDG No.: 205061509	Lab File ID: _2	2050714/B0	324		
Matrix: Water		Lab Sample II	D: <u>205061</u>	50902		
Sample wt/vol:	1000 Units: mL	Date Collected	d: <u>06/14/0</u>	Time:	1555	
Level: (low/med)	LOW	Date Received	i: <u>06/15/0</u>	5		
% Moisture:	decanted: (Y/N)	Date Extracted	d: <u>06/20/0</u> 5	5		
GC Column: DI	B-5MS-30M ID: .25 (mm)	Date Analyzed	1: 07/14/05	Time	: 1300	
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor	: <u>1</u>	Analy	/st: JAR3	
Injection Volume	: (µL)	Prep Method:	OLM4.2 S	VOA		
GPC Cleanup: (\)	//N) N pH:	Analytical Meti	hod: OLM	O 4.2		
		Instrument ID:	MSSV3			
CONCENTRATION	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	tch: 295505	
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
117-81-7	bis(2-ethylhexyl)phthalate	10.0.64	JB	0.010	10.0	∃u
101-55-3	4-Bromophenyl-phenylether	10.0	U	0.010	10.0	
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0	
86-74-8	Carbazole	10.0	U	0.010	10.0	7
218-01-9	Chrysene	10.0	Ü	0.010	10.0	7
84-74-2	Di-n-butylphthalate	10.03	JB	0.010	10.0	٦u
117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0	٦,٠
53-70-3	Dibenz(a,h)anthracene	10.0	U	0.010	10.0	ヿ
132-64-9	Dibenzofuran	10.0	U	0.010	10.0	ヿ
84-66-2	Diethylphthalate	0.600	J	0.010	10.0	ヿ
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0	┥ .
105-67-9	2,4-Dimethylphenol	10.0	U	0.010	10.0	7
206-44-0	Fluoranthene	10.0	U	0.010	10.0	ヿ
86-73-7	Fluorene	10.0	Ū	0.010	10.0	7
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0	7
87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0	7
77-47-4	Hexachlorocyclopentadiene	10.0	U	0.010	10.0	7
67-72-1	Hexachloroethane	10.0	U	0.010	10.0	7
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	0.010	10.0	7
78-59-1	Isophorone	10.0	Ü	0.010	10.0	7
91-20-3	Naphthalene	10.0	U	0.010	10.0	7
100-01-6	4-Nitroaniline	25.0	Ų	0.010	25.0	7
98-95-3	Nitrobenzene	10.0	U	0.010	10.0	7
100-02-7	4-Nitrophenol	25.0	Ú	0.010	25.0	7
87-86-5	Pentachlorophenol	25.0	U	0.010	25.0	7
85-01-8	Phenanthrene	10.0	U	0.010	10.0	7
108-95-2	Phenol	10.0	U	0.010	10.0	7
129-00-0	Pyrene	10.0	U	0.010	10.0	7
621-64-7	N-Nitroso-di-n-propylamine	10.0	Ü	0.010	10.0	7

Lab Name: GCA	<u> </u>	Sample ID: Si	KGW07R-1	014	
Lab Code: LA024	Case No.:	Contract:			
SAS No.:	SDG No.: 205061509	Lab File ID: 20	50714/B03	24	
Matrix Water		Lab Sample ID:	20506150	0902	
Sample wt/vol: 10	000 Units: mL	Date Collected:	06/14/05	Time:	1555
Level: (low/med)	LOW	Date Received:	06/15/05		
% Moisture:	decanted: (Y*N)	Date Extracted:	06/20/05		
GC Column: DB-5	5MS-30M ID: _25 (mm)	Date Analyzed:	07/14/05	Time	1300
Concentrated Extra	ct Volume: 1000 (µL)	Dilution Factor:	1	Analy	st JAR3
Injection Volume:	1.0 (µL)	Prep Method:	OLM4.2 SV	/OA	<u></u>
GPC Cleanup: (Y/N	I) <u>N</u> pH:	Analytical Metho	d: OLMC	14.2	
		Instrument ID:	MSSV3		
CONCENTRATION	IUNITS: ug/L	Prep Batch: 25	93939	Analytical Ba	tch: 295505
CAS NO. C	OMPOUND	RESULT	Q	MDL	RL
86-30-6 N	-Nitrosodiphenylamine	10.0	U	0.010	10.0
95-48-7 o	Cresol	10.0	U	0.010	10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW07R-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0324
Matrix: Water	Lab Sample ID: 20506150902
Sample wt/vol: Units:	Date Collected: 06/14/05 Time: 1555
Level: (low/med)	Date Received: 06/15/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1300
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
Number TICs Found: 1 CONCENTRATION UNITS:	Instrument ID: MSSV3
	77 707 901 9
CAS NO. COMPOUND	RT EST. CONC. Q
1. 603-11-2 1,2-Benzenedicarboxylic acid,	6.281 8

Lab Name: GCAL		Sample ID: _9	SKGW59-10	14	
Lab Code: LA024	Case No.	Contract:			
SAS No.:	SDG No.: 205061509	Lab File ID: 2	2050714/B0	325	
Matric Water		Lab Sample ID	2050615	60907	
Sample wt/vol: 100	00 Units: mL	Date Collected	: 06/15/05	Time:	1310
Level: (low/med) _i	LOW	Date Received	06/16/05	i	
% Maisture:	decanted: (Y'N)	Date Extracted	: 06/20/05	3	
GC Column: DB-5i	MS-30M ID: .25 (mm)	Date Analyzed	: 07/14/05	Time:	1318
	t Volume: 1000 (µL)	Dilution Factor	: 1	Analy	st: JAR3
Injection Volume:		Prep Method:	OLM4.2 S	VOA	
-	N pH	Analytical Meth	vod: OLM	04.2	
G. O O.C. Ap. (1714)	<u> </u>	Instrument ID:	MSSV3		
CONCENTRATION	UNITS: ug/L	Prep Batch:		Analytical Ba	tch: 295505
CAS NO. CO	MP OUND	RESULT		MDL	RL
95-95-4 2.4	I,5-Trichlorophenol	10.0	U	0.010	10.0
68-06-2 2.4	I,6-Trichloropheno	10.0	υ	0.010	10.0
	I-Dichlorophenol	*0.c	Ü	0.010	10.0
	I-Dinitrophenol	25.0	U	0.010	25.0
	I-Dinitrotoluene	10.0	IJ	0.010	10.0
	5-Dinitrotoluene	10.0	U	0.010	10.0
	Chloronaphthalene	10.0	U	0.010	10.0
	Chlorophenol	*0.0	U	0.010	10.0
	Vethylnaphthalene	*0.0	Ü	0.010	10.0
	Vitroaniline	25.0	U	0.010	25.0
	Vitrophenol	• 0.0	U	0.010	10.0
	'-Dichlorobenzidine	*0.0	U	0.010	10.0
	Stroaniine	25.0	U	0.010	25.0
	Welthyl-4,6-dinitrophenol	25.0	Ü	0.010	25.0
	Chloro-3-methylphenol	· 0.0	U	0.010	10.0
	Chloroaniline	· 0.0	U	0.010	10.0
7005-72-3 4-0	Chlorophenyl-phenylether	70.0	U	0.010	10.0
	Aethylphenol (p-Cresol)	10.0	U	0.010	10.0
83-32-9 Ac	enaphthene	- 5.0	U	0.010	10.0
	enaphthylene	- 0.0	U	0.010	10.0
120-12-7 And	thracene	10.0	U	0.010	10.0
56-55-3 Be	nzo(a)anthracene	10.0	U	0.010	10.0
	nzo(a)pyrene	10.0	U	0.010	10.0
	nzo(b)fluoranthene	10.0	U	0.010	10.0
	nzo(g,h,i)perylene	10.0	Ü	0.010	10.0
	nzo(k)fluoranthene	10.0	U	0.010	10.0
	(2-Chloroethoxy)methane	10.0	U	0.010	10.0
	(2-Chloroethyl)ether	13.5	Ū	0.010	10.0
	(2-Chloroisopropy ether	10.0	Ū	0.010	10.0
	·				

Lab Code: LA024	Lab Name: GC	CAL	Sample ID:	SKGW59-10	014	
Matrix: Water	Lab Code: LA024 Case No.: Contract:					
Matrix: Water	SAS No.:	SDG No.: 205061509	Lab File ID:	2050714/B0	325	
Date Received: 06/16/05 Date Received: 06/16/05 Date Extracted: 06/20/05 Date Extracted: 06/20/05 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/05 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/05 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/05 Date Analyzed: 07/14/06			Lab Sample II	D: 205061	50907	
Date Received: 06/16/05 Date Received: 06/20/05 Date Extracted: 06/20/05 Date Extracted: 06/20/05 Date Analyzed: 07/14/05 Time: 1318 Date Analyzed: 07/14/06 Date Analyzed	Sample wt/vol:	1000 Units: mL	Date Collected	d: 06/15/0	5 Time:	1310
Concentrated Extract Volume: 1.00	Level: (low/med)	LOW	Date Received	t: 06/16/0	5	
Concentrated Extract Volume: 1000	% Moisture:	decanted: (Y/N)	Date Extracted	d: 06/20/0	5	
Injection Volume: 1.0	GC Column: DI	B-5MS-30M ID:25 (mm)	Date Analyzed	i: <u>07/14/0</u> :	5 Time	: 1318
Injection Volume: 1.0	Concentrated Ex	tract Volume: 1000 (μL)	Dilution Factor	: 1	Analy	yst: JAR3
CONCENTRATION UNITS: ug/L Prep Batch: 293939 Analytical Batch: 295505	Injection Volume	: <u>1.0</u> (μL)	Prep Method:	OLM4.2 S	VOA	······································
CONCENTRATION UNITS: ug/L CAS NO. COMPOUND RESULT Q MDL RL 117-81-7 bis(2-ethylhexyl)phthalate 10.0 U 0.010 1	GPC Cleanup: (//N) N pH:	Analytical Met	hod: OLM	O 4.2	
CAS NO. COMPOUND RESULT Q MDL RL 117.81-7 bis(2-ethylhexyl)phthalate 101-55-3 4-Bromophenyl-phenylether 10.0 U 0.010 10.0 85-68-7 Butylbenzylphthalate 10.0 U 0.010 10.0 86-74-8 Carbazole 10.0 U 0.010 10.0 84-74-2 Di-n-butylphthalate 10.0 U 0.010 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 84-66-3 Diethylphthalate 10.0 U 0.010 10.0 84-66-3 Diethylphthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 105-67-9 10.0 105-67-9 10.0 10.0 U 0.010 10.0 86-73-7 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 87-68-3 Hexachlorobenzene 10.0 U 0.010 10.0 10.0 10-0-10-10-10-10-10-10-10-10-10-10-10-10			Instrument ID:	MSSV3		
117-81-7 bis(2-ethylhexyl)phthalate	CONCENTRATI	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	atch: 295505
101-55-3	CAS NO.	COMPOUND	RESULT	Q	MDL	RL
10.1-55-3 4-Bromophenyl-phenylether 10.0 U 0.010 10.0 10.0 85-68-7 Butylbenzylphthalate 10.0 U 0.010 10.0 1	117-81-7	bis(2-ethylhexyl)phthalate	10.0147	JB	0.010	10.0 L
86-74-8 Carbazole 10.0 U 0.010 10.0 213-01-9 Chrysene 10.0 U 0.010 10.0 84-74-2 Di-n-butylphthalate 10.0 U 0.010 10.0 117-84-0 Di-n-octylphthalate 10.0 U 0.010 10.0 132-64-9 Dibenzafuran 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachloroberace 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 87-72-1 Hexachlorocyclopentadiene <t< td=""><td>101-55-3</td><td>4-Bromophenyl-phenylether</td><td></td><td>U</td><td>0.010</td><td></td></t<>	101-55-3	4-Bromophenyl-phenylether		U	0.010	
218-01-9	85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0
84-74-2 Di-n-butylphthalate 10.0 U 0.010 10.0 117-84-0 Di-n-octylphthalate 10.0 U 0.010 10.0 53-70-3 Dibenz(a,h)anthracene 10.0 U 0.010 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)	86-74-8	Carbazole	10.0	U	0.010	10.0
117-84-0 Di-n-octylphthalate 10.0 U 0.010 10.0 10.0 132-64-9 Dibenz(a,h)anthracene 10.0 U 0.010 10.0 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 10.0 131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.	218-01-9	Chrysene	10.0	U	0.010	10.0
53-70-3 Dibenz(a,h)anthracene 10.0 U 0.010 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 87-68-3 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 87-68-3 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Pentachlorophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 109-00-0 Pyrene 10.0 U 0.010 10.0	84-74-2	Di-n-butylphthalate	10.0	U	0.010	10.0
132-64-9 Dibenzofuran 10.0 U 0.010 10.0 84-66-2 Diethylphthalate 10.0 U 0.010 10.0 131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 87-68-3 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 109-01-0 Pyrene 10.0 U 0.010 10.0 100-01-0 Pyrene 10.0 U 0.010 10.0 100-	117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0
84-66-2 Diethylphthalate 10.0 U 0.010 10.0 131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 87-68-3 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 87-72-1 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 193-39-5 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 98-95-3 Nitrobenzene <td>53-70-3</td> <td>Dibenz(a,h)anthracene</td> <td>10.0</td> <td>U</td> <td>0.010</td> <td>10.0</td>	53-70-3	Dibenz(a,h)anthracene	10.0	U	0.010	10.0
131-11-3 Dimethyl-phthalate 10.0 U 0.010 10.0 105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 98-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 98-95-3 Nitrobenz	132-64-9	Dibenzofuran	10.0	U	0.010	10.0
105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene <t< td=""><td>84-66-2</td><td>Diethylphthalate</td><td>10.0</td><td>U</td><td>0.010</td><td>10.0</td></t<>	84-66-2	Diethylphthalate	10.0	U	0.010	10.0
105-67-9 2,4-Dimethylphenol 10.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0	131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0
206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 193-39-5 </td <td>105-67-9</td> <td></td> <td>10.0</td> <td>U</td> <td>0.010</td> <td>10.0</td>	105-67-9		10.0	U	0.010	10.0
118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenol 10.0 U 0.010 10.0 108-95-2 Phenol 10.0	206-44-0		10.0	U	0.010	10.0
87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0	86-73-7	Fluorene	10.0	U	0.010	10.0
77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenol 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0
67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0
67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	77-47-4	Hexachlorocyclopentadiene	10.0	Ū	0.010	10.0
78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	67-72-1		10.0	U	0.010	10.0
91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	0.010	10.0
100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	78-59-1	Isophorone	10.0	U	0.010	10.0
98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	91-20-3	Naphthalene	10.0	U	0.010	10.0
100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	100-01-6	4-Nitroaniline	25.0	U	0.010	25.0
100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0						
87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0		4-Nitrophenol		U		
85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0						
108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0						
129-00-0 Pyrene 10.0 U 0.010 10.0				_		
	L	Pyrene				
		<u> </u>				

Lab Name: GCAL	Sample ID: SKGW59-1014
Lab Code: LA024 Case No :	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/80325
Matric Water	Lab Sample ID: 20506150907
Sample wt/vol: 1000 Units: mL	Date Collected: 06/15/05 Time: 1310
Level: (low/med) LOW	Date Received: 06/16/05
% Moisture: decanted: (Y*N)	Date Extracted: 06/20/05
GC Column: D8-5MS-30M ID: 25 (mm)	Date Analyzed: 07/14/05 Time: 1318
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Valume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW59-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0325
Matrix: Water	Lab Sample ID: 20506150907
Sample wt/vol: Units:	Date Collected: 06/15/05 Time: 1310
Level: (low/med)	Date Received: 06/16/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1318
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
	Instrument ID: MSSV3
Number TICs Found: 1	
CONCENTRATION UNITS:	•
CAS NO. COMPOUND	RT EST. CONC. Q
1. 134-62-3 Diethyltoluamide	3.846 5.71

Lab Name: GCAL	Sample ID: SKGW61-1014
Lab Code: LA024 Case No :	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0327
Matrix Water	Lab Sample ID: 20506150909
Sample wt/vol: 1000 Units: mL	Date Collected: 06/15/05 Time: 1445
Sample WVIOL 1000 Onics. IIIL	Date Collected: 00/13/03 Talle: 1445
Level: (low/med) LOW	Date Received: 06/16/05
% Moisture: decanted: (Y/N)	Date Extracted: 06/20/05
GC Column: DB-5MS-30M ID: _25 (mm)	Date Analyzed: 07/14/05 Time: 1357
Concentrated Extract Volume: 1000 (µL)	Diution Factor: 1 Analyst JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	
	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
95-95-4 2,4,5-Trichloropheno	10.0 U 0.010 10.0
88-06-2 2,4,6-Trichlorophenol	10.0 U 0.010 10.0
120-83-2 2,4-Dichlorophenol	10.0 U 0.010 10.0
51-28-5 2,4-Dinitrophenol	25.0 U 0.010 25.0
121-14-2 2,4-Dinitrotoluene	10.0 U 0.010 10.0
606-20-2 2,6-Dinitrotoluene	10.0 U 0.010 10.0
91-58-7 2-Chloronaphthalene	10.0 U 0.010 10.0
95-57-8 2-Chlorophenol	10.0 U 0.010 10.0
91-57-6 2-Methylnaphthalene	10.0 U 0.010 10.0
88-74-4 2-Nitroaniline	25.0 U 0.010 25.0
88-75-5 2-Nitrophenol	10.0 U 0.010 10.0
91-94-1 3,3'-Dichlorobenzidine	10.0 U 0.010 10.0
99-09-2 3-Nitroaniline	25.0 U 0.010 25.0
534-52-1 2-Methyl-4,6-dinitrophenol	25.0 U 0.010 25.0
59-50-7 4-Chloro-3-methylphenoi	10.0 U 0.010 10.0
106-47-8 4-Chloroaniline	10.0 U 0.010 10.0
7005-72-3 4-Chlorophenyl-phenylether	10.0 U 0.010 10.0
106-44-5 4-Methylphenol (p-Cresoi)	10.0 U 0.010 10.0
83-32-9 Acenaphthene	10.0 U 0.010 10.0
208-96-8 Acenaphthylene	10.0 U 0.010 10.0
120-12-7 Anthracene	10.0 U 0.010 10.0
56-55-3 Benzo(a)anthracene	10.0 U 0.010 10.0
50-32-8 Benzo(a)pyrene	10.0 U 0.010 10.0
205-99-2 Benzo(b)fluoranthene	10.0 U 0.010 10.0
191-24-2 Benzo(g,h,i)perylene	10.0 U 0.010 10.0
207-08-9 Benzo(k)fluoranthene	10.0 U 0.010 10.0
111-91-1 Bis(2-Chloroethoxy)methane	10.0 U 0.010 10.0
111-44-4 Bis(2-Chloroethyl)etter	0.535 J 0.010 10.0
108-60-1 bis(2-Chloroisopropy ether	10.0 U 0.010 10.0

Lab Name: Go	Lab Name: GCAL Sample ID: SKGW61-1014					
Lab Code: LA024 Case No.: Contract:						
SAS No.: SDG No.: 205061509 Lab File ID: 2050714/B0327						
Matrix: Water		Lab Sample II	D: 2050615	50909		
Sample wt/vol:	1000 Units: mL	Date Collected	d: 06/15/05	Time:	1445	
Level: (low/med)	LOW	Date Received	d: 06/16/05			_
% Moisture:	decanted: (Y/N)	Date Extracted	d: 06/20/05	5		_
GC Column: D	B-5MS-30M ID: .25 (mm)	Date Analyzed	1: 07/14/05	Time	: 1357	_
Concentrated Ex	dract Volume: 1000 (μL)	Dilution Factor	r: <u>1</u>	Analy	yst: JAR3	-
	e: 1.0 (µL)	Prep Method:	OLM4.2 S	VOA		_
	Y/N) N pH:	Analytical Met	hod: OLM	O 4.2		_
, ,		Instrument ID:	MSSV3			
CONCENTRATI	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	itch: 295505	-
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	•
117-81-7	bis(2-ethylhexyl)phthalate	10.0 424	JB	0.010	10.0	14
101-55-3	4-Bromophenyl-phenylether	10.0	1 0	0,010	10.0	1
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0	1
86-74-8	Carbazole	10.0	l ū	0.010	10.0	t
218-01-9	Chrysene	10.0	Ü	0.010	10.0	1
84-74-2	Di-n-butylphthalate	10.0	 	0.010	10.0	1
117-84-0	Di-n-octylphthalate	10.0	 	0.010	10.0	ł
53-70-3	Dibenz(a,h)anthracene	10.0	 	0.010	10.0	j
132-64-9	Dibenzofuran	10.0	 	0.010	10.0	ł
84-66-2	Diethylphthalate	10.0	 	0.010	10.0	ł
131-11-3	Dimethyl-phthalate	10.0	1 0	0.010	10.0	
105-67-9	2,4-Dimethylphenol	10.0	 	0.010	10.0	
206-44-0	Fluoranthene	10.0	 	0.010	10.0	
86-73-7	Fluorene	10.0	Ü	0.010	10.0	
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0	
87-68-3	Hexachlorobutadiene	10.0	l u	0.010	10.0	
77-47-4	Hexachlorocyclopentadiene	10.0	Ü	0.010	10.0	
67-72-1	Hexachloroethane	10.0	Ū	0.010	10.0	
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	Ü	0.010	10.0	
78-59-1	Isophorone	10.0	Ü	0.010	10.0	
91-20-3	Naphthalene	10.0	Ü	0.010	10.0	
100-01-6	4-Nitroaniline	25.0	Ü	0.010	25.0	
98-95-3	Nitrobenzene	10.0	Ü	0.010	10.0	i
100-02-7	4-Nitrophenol	25.0	Ü	0.010	25.0	
87-86-5	Pentachlorophenol	25.0	ΰ	0.010	25.0	
85-01-8	Phenanthrene	10.0	Ü	0.010	10.0	ı
108-95-2	Phenol	10.0	 	0.010	10.0	
129-00-0	Pyrene		Ü	0.010	10.0	
621-64-7	N-Nitroso-di-n-propylamine	10.0	U	0.010	10.0	
(UE 1-UT-1	fra rate ogo-di-ti-brobhenime	1 4 10.0	. ~ !	V.U.V	10.0	

alsh h

Lab Name: GCAL	Sample ID: SKGW61-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/80327
Matrix Water	Lab Sample ID: 20506150909
Sample wt/vol: 1000 Units: mL	Date Collected: 06/15/05 Time: 1445
Level: (low/med) LOW	Date Received: 06/16/05
% Moisture: decanted: (Y*N)	Date Extracted: 06/20/05
GC Column: DB-5MS-30M ID: 25 (mm)	Date Analyzed: 07/14/05 Time: 1357
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW61-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0327
Matrix: Water	Lab Sample ID: 20506150909
Sample wt/vol: Units:	Date Collected: 06/15/05 Time: 1445
Level: (low/med)	Date Received: 06/16/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1357
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
4	Instrument ID: MSSV3
Number TICs Found: 2	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1. 105-60-2 Caprolactam	2.793 6.63
2. 134-62-3 Diethyltoluamide	3.846 7.76

Lab Name: GC	AL	Sample ID: 5	SKGW64-10	14	
Lab Code: LA0	24	Contract:			
	SDG No.: 205061509				
Matrix Water		Lab Sample ID	2050615	i0910	
					
Sample wt/vol:	1000 Units: mL	Date Collected	1: 06/15/05	Time:	0945
Level: (low/med)	LOW	Date Received	: 06/16/05	<u> </u>	
% Moisture:	decanted: (Y-N)	Date Extracted	1: 06/20/05		
GC Column: DE	3-5MS-30M ID: _25 (mm)	Date Analyzed	: <u>07/14/05</u>	Time	: 1416
Concentrated Ext	iract Volume: 1000 (μl.)	Diiution Factor	1 1	Analy	st JAR3
	: <u>1.0</u> (µL)	Prep Method:	OLM4.2 S	VOA	·
	/N) N pH:	Analytical Meth	nod: OLM	04.2	
G C Commup. (1	he t	Instrument ID:			
CONCENTRATIO	ON UNITS: Ug/L				
CONCENTION IN		Prep Batch:	293939	Analytical Ba	tch: 295505
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
95-95-4	2,4,5-Trichloropheno	10.0	U	0.010	10.0
88-06-2	2,4,6-Trichlorophenoi	10.0	U	0.010	10.0
120-83-2	2,4-Dichlorophenol	10.0	U	0.010	10.0
51-28-5	2,4-Dinitrophenol	25.0	U	0.010	25.0
121-14-2	2,4-Dinitrotoluene	10.0	υ	0.010	10.0
606-20-2	2,6-Dinitrotoluene	10.0	U	0.010	10.0
91-58-7	2-Chloronaphthalene	10.0	U	0.010	10.0
95-57-8	2-Chlorophenol	10.0	U	0.010	10.0
91-57-6	2-Methylnaphthalene	10.0	U	0.010	10.0
88-74-4	2-Nitroaniline	25.0	U	0.010	25.0
88-75-5	2-Nitrophenol	10.0	U	0.010	10.0
91-94-1	3,3'-Dichlorobenzidine	10.0	υ	0.010	10.0
99-09-2	3-Nitroaniline	25.0	υ	0.010	25.0
534-52-1	2-Methyl-4,6-dinitrophenol	25.0	U	0.010	25.0
59-50-7	4-Chloro-3-methylphenol	10.C	U	0.010	10.0
106-47-8	4-Chloroaniline	10.0	U	0.010	10.0
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	0.010	10.0
106-44-5	4-Methylphenol (p-Cresol)	10.0	U	0.010	10.0
83-32-9	Acenaphthene	10.0	U	0.010	10.0
208-96-8	Acenaphthylene	10.0	U	0.010	10.0
120-12-7	Anthracene	10.0	U	0.010	10.0
56-55-3	Benzo(a)anthracene	1C.C	U	0.010	10.0
50-32-8	Benzo(a)pyrene	10.0	U	0.010	10.0
205-99-2	Benzo(b)fluoranthene	10.0	Ü	0.010	10.0
191-24-2	Benzo(g,h,i)perytere	10.0	U	0.010	10.0
207-08-9	Benzo(k)fluoranthene	100	U	0.010	10.0
111-91-1	Bis(2-Chloroethox) /methane	10.0	U	0.010	10.0
111-44-4	Bis(2-Chloroethyl)ether	•0.0	U	0.010	10.0
	bis(2-Chloroisoprop : ether	10.0	U	0.010	10.0

Lab Name: GC	AL	Sample ID:	SKGW64-10)14		
Lab Code: LA0	Code: LA024 Case No.: Contract:					
SAS No.: SDG No.: 205061509						
Matrix: Water		Lab Sample IC	D: <u>205061</u>	50910		
Sample wt/vol:	1000 Units: mL	Date Collected	d: <u>06/15/0</u>	Time:	0945	
Level: (low/med)	LOW	Date Received	l: <u>06/16/0</u> 5	5		
% Moisture:	decanted: (Y/N)	Date Extracted	d: <u>06/20/05</u>	5	· · · · · · · · · · · · · · · · · · ·	
GC Column: DE	3-5MS-30M ID: <u>.25</u> (mm)	Date Analyzed	l: <u>07/14/05</u>	5 Time	e: <u>1416</u>	
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor	: <u>1</u>	Anal	yst: JAR3	
	:(µL)	Prep Method:	OLM4.2 S	VOA		 -
GPC Cleanup: (Y	′/N) <u>N</u> pH:	Analytical Met	hod: OLM	O 4.2		_
		Instrument ID:	MSSV3			
CONCENTRATIO	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	atch: 295505	
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
117-81-7	bis(2-ethylhexyl)phthalate	10.0476	JB	0.010	10.0	∃u
101-55-3	4-Bromophenyl-phenylether	10.0	Ū	0.010	10.0	7 1
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0	٦
86-74-8	Carbazole	10.0	U	0.010	10.0	7
218-01-9	Chrysene	10.0	U	0.010	10.0	7
84-74-2	Di-n-butylphthalate	10.0	U	0.010	10.0	_
117-84-0	Di-n-octylphthalate	10.0	Ų	0.010	10.0	_
53-70-3	Dibenz(a,h)anthracene	10.0	U	0.010	10.0	_
132-64-9	Dibenzofuran	10.0	U	0.010	10.0	7
84-66-2	Diethylphthalate	10.0	U	0.010	10.0	7
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0	┪
105-67-9	2,4-Dimethylphenol	10.0	U	0.010	10.0	┫
206-44-0	Fluoranthene	10.0	U	0.010	10.0	7
86-73-7	Fluorene	10.0	U	0.010	10.0	7
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0	1
87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0	1
77-47-4	Hexachlorocyclopentadiene	10.0	U	0.010	10.0	1
67-72-1	Hexachloroethane	10.0	U	0.010	10.0	7
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	0.010	10.0	7
78-59-1	Isophorone	10.0	U	0.010	10.0	7
91-20-3	Naphthalene	10.0	Ú	0.010	10.0	1
100-01-6	4-Nitroaniline	25.0	U	0.010	25.0	7
98-95-3	Nitrobenzene	10.0	U	0.010	10.0	7
100-02-7	4-Nitrophenol	25.0	υ	0.010	25.0	1
87-86-5	Pentachlorophenol	25.0	U	0.010	25.0	7
85-01-8	Phenanthrene	10.0	Ü	0.010	10.0	1
108-95-2	Phenol	10.0	U	0.010	10.0	1
129-00-0	Pyrene	10.0	U	0.010	10.0	1
	N-Nitroso-di-n-propylamine	10.0	- 11	0.010	10.0	7

كرطاة الم

Lab Name: GCAL			Sample ID: S	KGW64-10	114	
Lab Code: LA024	Case No :		Contract:	,		
SAS No.:	SDG No.: 20506	1509	Lab File ID: 2	050714/B0	328	
Matric Water			Lab Sample ID	2050615	50910	
Sample wt/vol: 1000	Units: mL		Date Collected	06/15/05	Time:	0945
Level: (low/med) LOW			Date Received	: <u>06/16/05</u>	5	
% Moisture:	decanted: (Y*N)	<u> </u>	Date Extracted	: 06/20/05	5	
GC Column: DB-5MS-30	M ID: <u>.25</u>	(mm)	Date Analyzed	07/14/05	Time	1416
Concentrated Extract Volume	me: <u>1000</u>	(µL)	Dilution Factor	: <u>1</u>	Analy	st JAR3
Injection Volume:	1.0	(µL)	Prep Method:	OLM4.2 S	VOA	
GPC Cleanup: (Y/N) N	pH:		Analytical Meth	od: OLM	04.2	
CONCENTRATION UNITS	i: ug/L		Instrument ID:			tch: 295505
CAS NO. COMPO	DUND		RESULT	·	MDL	,
86-30-6 N-Nitrosc	odiphenylamine		*0.0	U	0.010	10.0
95-48-7 o-Cresol			10.0	U	0.010	10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW64-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0328
Matrix: Water	Lab Sample ID: 20506150910
Sample wt/vol: Units:	Date Collected: 06/15/05 Time: 0945
Level: (low/med)	Date Received: 06/16/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1416
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
	Instrument ID: MSSV3
Number TICs Found: 1	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1. 134-62-3 Diethyltoluamide	3.846 61

Lab Name: GCAL		Sample ID: 5	SKGW63-10	114	
Lab Code: LA024 Case No.:		Contract:			
SAS No.: SDG No.:					
Matric Water		- Lab Sample ID	2050615	50911	
		·			4005
Sample w/voit: 1000 Units: mL		Date Collected	: 00/15/05	Time:	1035
Level: (low/med) LOW		Date Received	: 06/16/05	5	
% Moisture: decanted (Y/N)		Date Extracted	: 06/20/05	5	
GC Column: DB-5MS-30M :D: .25	(mm)	Date Analyzed	07/14/05	Time	: 1436
Concentrated Extract Volume: 1000	— (µL)	Dilution Factor	: 1	Anal	yst: JAR3
Injection Valume: 1.0		Prep Method:	OLM4.2 S	VOA	
GPC Cleanup: (Y/N) N pH:	_	Analytical Meth	rod: OLM	04.2	
OFC Cosamp. (1/N) N SH:					
CONCENTRATION UNITS: Up/L		instrument ID:			
CONCENTRATION OF THE SECTION OF THE		Prep Batch:	293939	Analytical Ba	atch: 295505
CAS NO. COMPOUND		RESULT	Q	MDL	RL
95-95-4 2,4,5-Trichlorophenoi		10.0	U	0.010	10.0
88-06-2 2,4,6-Trichlorophenol		10.0	υ	0.010	10.0
120-83-2 2,4-Dichlorophenol		10.0	U	0.010	10.0
51-28-5 2,4-Dinitrophenol		25.0	U	0.010	25.0
121-14-2 2,4-Dinitrotoluene		10.0	U	0.010	10.0
606-20-2 2,6-Dinitrotoluene		10.0	U	0.010	10.0
91-58-7 2-Chloronaphthalene		*0.0	υ	0.010	10.0
95-57-8 2-Chlorophenol		10.0	U	0.010	10.0
91-57-6 2-Methylnaphthalene		10.0	υ	0.010	10.0
88-74-4 2-Nitroaniline		25.0	U	0.010	25.0
88-75-5 2-Nitrophenol		10.0	U	0.010	10.0
91-94-1 3,3'-Dichlorobenzidine		10.0	υ	0.010	10.0
99-09-2 3-Nitroaniline		25.0	U	0.010	25.0
534-52-1 2-Methyl-4,6-dinitrophenol		25.0	U	0.010	25.0
59-50-7 4-Chloro-3-methylphenol		10.0	U	0.010	10.0
106-47-8 4-Chloroaniline		10.0	U	0.010	10.0
7005-72-3 4-Chlorophenyl-phenylether		10.0	U	0.010	10.0
106-44-5 4-Methylphenol (p-Cresol)		10.0	U	0.010	10.0
83-32-9 Acenaphthene		10.0	U	0.010	10.0
208-96-8 Acenaphthylene		*0.0	U	0.010	10.0
120-12-7 Anthracene		10.0	Ŭ	0.010	10.0
56-55-3 Benzo(a)anthracene		10.0	Ú	0.010	10.0
50-32-8 Benzo(a)pyrene		10.0	U	0.010	10.0
205-99-2 Benzo(b)fluoranthene		10.0	U	0.010	10.0
191-24-2 Benzo(g,h,i)perylene		10.0	U	0.010	10.0
207-08-9 Benzo(k)fluoranthene		10.0	U	0.010	10.0
111-91-1 Bis(2-Chloroethoxy)methane		10.0	U	0.010	10.0
111-44-4 Bis(2-Chloroethyl)ether		-0.0	U	0.010	10.0
108-60-1 bis(2-Chloroisopropy lether		10.0	Ū	0.010	10.0

Lab Name: G	CAL	Sample ID:	SKGW63-10)14	
Lab Code: LA024 Case No.: Contract:					
SAS No.: SDG No.: 205061509 Lab File ID: 2050714/B0329					
Matrix: Water		Lab Sample ID	D: 2050615	50911	
Sample wt/vol:	1000 Units: mL	Date Collected	i: 06/15/0	 5	1035
Level: (low/med		Date Received	d: 06/16/05	5	
% Moisture:	decanted: (Y/N)	Date Extracted	d: 06/20/05	 5	
_	DB-5MS-30M ID: .25 (mm)	Date Analyzed	l: 07/14/05	Time	: 1436
	xtract Volume: 1000 (µL)	Dilution Factor	: <u>1</u>	Analy	/st: JAR3
Injection Volume: 1.0 (µL) Prep Method: OLM4.2 SVOA					
	Y/N) N pH:	Analytical Met	hod: OLM	O 4.2	
		Instrument ID:	MSSV3		
CONCENTRAT	ION UNITS: ug/L	Prep Batch:	293939	Analytical Ba	itch: 295505
CAS NO.	COMPOUND	RESULT		MDL.	RL
117-81-7	bis(2-ethylhexyl)phthalate	0.0581	JB	0.010	10.0
101-55-3	4-Bromophenyl-phenylether	10.0	U	0.010	10.0
85-68-7	Butylbenzylphthalate	1.07	j	0.010	10.0
86-74-8	Carbazole	10.0	u	0.010	10.0
218-01-9	Chrysene	10.0	Ū	0.010	10.0
84-74-2	Di-n-butylphthalate	10.0	Ü	0.010	10.0
117-84-0	Di-n-octylphthalate	10.0	Ū	0.010	10.0
53-70-3	Dibenz(a,h)anthracene	10.0	Ü	0.010	10.0
132-64-9	Dibenzofuran	10.0	Ü	0.010	10.0
84-66-2	Diethylphthalate	10.0	-	0.010	10.0
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0
105-67-9	2,4-Dimethylphenol	10.0	Ü	0.010	10.0
206-44-0	Fluoranthene	10.0	U	0.010	10.0
86-73-7	Fluorene	10.0	Ü	0.010	10.0
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0
87-68-3	Hexachlorobutadiene	10.0	Ü	0.010	10.0
77-47-4	Hexachlorocyclopentadiene	10.0	Ü	0.010	10.0
67-72-1	Hexachloroethane	10.0	Ū	0.010	10.0
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	Ü	0.010	10.0
78-59-1	Isophorone	10.0	Ü	0.010	10.0
91-20-3	Naphthalene	10.0	Ü	0.010	10.0
100-01-6	4-Nitroaniline	25.0	Ü	0.010	25.0
98-95-3	Nitrobenzene	10.0	U	0.010	10.0
100-02-7	4-Nitrophenol	25.0	Ü	0.010	25.0
87-86-5	Pentachiorophenol	25.0	υ	0.010	25.0
			U		
85-01-8	Phenanthrene	10.0	U	0.010	10.0
108-95-2	Phenol	10.0		0.010	10.0
129-00-0	Pyrene	10.0	U	0.010	10.0
621-64-7	N-Nitroso-di-n-propylamine	10.0	C	0.010	10.0

9/8/05

Lab Name: GCAL			Sample ID: S	KGW63-101	14	
Lab Code: LA024	Case No :		Contract:		·····	
SAS No.:	SDG No.: 205061	509	Lab File ID: 2	050714/B03	29	
Matrix Water			Lab Sample ID:	20506150	<u> 1911 </u>	
Sample wt/vol: 10	00 Units: mL		Date Collected:	06/15/05	Time:	1035
Levet (low/med)	LOW		Date Received:	06/16/05		
% Moisture:	decanted: (Y*N)		Date Extracted:	06/20/05		
GC Column: DB-5	MS-30M ID:25	(mm)	Date Analyzed:	07/14/05	Time:	1436
Concentrated Extrac	t Volume: 1000	(µL)	Dilution Factor:	1	Analy	st: JAR3
Injection Volume:	1.0	(µL)	Prep Method:	OLM4.2 SV	/OA	
GPC Cleanup: (Y/N)	N pH:		Analytical Meth	od: OLMC	14.2	
			Instrument ID:	MSSV3	* **** **** ***** *****	
CONCENTRATION	UNITS: ug/L		Prep Batch: 2	93939	_ Analytical Ba	tch: <u>295505</u>
CAS NO. CO	MPOUND		RESULT	Q	MDL	RL
	Nitrosodiphenylamine		10.0	U	0.010	10.0
95-48-7 0-6	Cresol		10.0	U	0.010	10.0

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW63-1014	
Lab Code: LA024 Case No.:	Contract:	
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0329	
Matrix: Water	Lab Sample ID: 20506150911	
Sample wt/vol: Units:	Date Collected: 06/15/05 Time: 1035	
Level: (low/med)	Date Received: 06/16/05	
% Moisture: not dec.	Date Extracted:	
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1436	
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3	
Injection Volume: 1.0 (µL)	Prep Method:	
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C	
	Instrument ID: MSSV3	
Number TICs Found: 1		
CONCENTRATION UNITS:		
CAS NO. COMPOUND	RT EST. CONC. Q	
1. 134-62-3 Diethyltoluamide	3.846 31.3	

Lab Name: GCAL		Sample ID:	SKGW62A-1	014	
Lab Code: LA024	Case No :	Contract:			
SAS No.:	SDG No : 205061509	Lab File ID: 2	2050714/803	30	
Matrix: Water		Lab Sample ID	2050615	0912	
Sample wt/vol: 1000	Units: mL	Date Collected	i: <u>06/15/05</u>	Time:	1130
Level: (low/med) LOW		Date Received	: 06/16/05		
% Moisture:	decanted: (Y/N)	Date Extracted	: 06/20/05	· _ · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
GC Column: DB-5MS-30M	I ID: .25 (mm)	Date Analyzed	07/14/05	Time	1455
Concentrated Extract Volum	ne: 1000 (µL)	Dilution Factor	: 1	Analy	st JAR3
Injection Volume:		Prep Method:	OLM4.2 S	VOA	
	pH:	Analytical Meth	rod: OLMK	14.2	
*** * * * * * * * * * * * * * * * * *	 ·	Instrument ID:	MSSV3		
CONCENTRATION UNITS:	ug/L	Prep Batch:		Analytical Ba	tch: 295505
CAS NO. COMPO	UND	RESULT		MDL	RL
95-95-4 2,4,5-Trict	hlorophenoi	10.0	l u l	0.010	10.0
	Naraphena	10.0	- U	0.010	10.0
120-83-2 2,4-Dichlo		10.0	Ü	0.010	10.0
51-28-5 2,4-Dinitro		25.0	U	0.010	25.0
121-14-2 2,4-Dinitro		10.0	Ü	0.010	10.0
606-20-2 2,6-Dinitro		10.0	l ü	0.010	10.0
	aphthalene	10.0		0.010	10.0
95-57-8 2-Chloropi		10.0	- 	0.010	10.0
	aphthalene	10.0	U	0.010	10.0
88-74-4 2-Nitroanii	·	25.0	U	0.010	25.0
88-75-5 2-Nitrophe		10.0	U	0.010	10.0
	robenzicine	10.0		0.010	10.0
99-09-2 3-Nitroanii		25.0	U	0.010	25.0
	,6-dinitrophenol	25.0	- U	0.010	25.0
	-methylphenol	10.0	U	0.010	10.0
106-47-8 4-Chloroar		10.0	- U	0.010	10.0
	henyl-phenylether	10.0	- U	0.010	10.0
	nenol (p-Cresol)	10.0	- U	0.010	
		10.0	U		10.0
				0.010	10.0
206-96-8 Acenaphth		10.0	<u> </u>	0.010	10.0
120-12-7 Anthracen		10.0	U		10.0
56-55-3 Benzo(a)a	 	10.0	U	0.010	10.0
50-32-8 Benzo(a)p	<u> </u>	10.0	<u>U</u>	0.010	10.0
	uoranthene	10.0	U	0.010	10.0
191-24-2 Benzo(g,h,		10.0	U	0.010	10.0
	uoranthene	10.0	U	0.010	10.0
	roethoxy imethane	10.0	U	0.010	10.0
	roethyl)e#er	10.0	U	0.010	10.0
108-60-1 bis(2-Chlor	roisopropyhether	10.0	IJ	0.010	10.0

Lab Name: GO	CAL	Sample ID:	SKGW62A-	1014	
Lab Code: LAG	024 Case No.:	Contract:			
SAS No.:	SDG No.: 205061509	Lab File ID: _2	2050714/B0	330	·
Matrix: Water		Lab Sample ID	2050615	0912	
Sample wt/vol:	1000 Units: mL	Date Collected	l: <u>06/15/05</u>	Time:	1130
Level: (low/med)	LOW	Date Received	: 06/16/05	5	
% Moisture:	decanted: (Y/N)	Date Extracted	1: 06/20/05	j	
GC Column: D	B-5MS-30M ID:25 (mm)	Date Analyzed	: 07/14/05	Time	: 1455
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3			st: JAR3
	: <u>1.0</u> (μL)				
GPC Cleanup: (Y/N) <u>N</u> pH:	Analytical Meth	nod: OLM	0 4.2	
		Instrument ID:	MSSV3		
CONCENTRATI	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	tch: 295505
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
117-81-7	bis(2-ethylhexyl)phthalate	0.0 5.64	JB	0.010	10.0
101-55-3	4-Bromophenyl-phenylether	10.0	U	0.010	10.0
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0
86-74-8	Carbazole	10.0	Ü	0.010	10.0
218-01-9	Chrysene	10.0	U	0.010	10.0
84-74-2	Di-n-butylphthalate	10.0	U	0.010	10.0
117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0
53-70-3	Dibenz(a,h)anthracene	10.0	Ü	0.010	10.0
132-64-9	Dibenzofuran	10.0	U	0.010	10.0
84-66-2	Diethylphthalate	10.0	U	0.010	10.0
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0
105-67-9	2,4-Dimethylphenol	10.0	U	0.010	10.0
206-44-0	Fluoranthene	10.0	U	0.010	10.0
86-73-7	Fluorene	10.0	Ü	0.010	10.0
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0
87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0
77-47-4	Hexachlorocyclopentadiene	10.0	U	0.010	10.0
67-72-1	Hexachloroethane	10.0	U	0.010	10.0
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	0.010	10.0
78-59-1	Isophorone	10.0	U	0.010	10.0
91-20-3	Naphthalene	10.0	U	0.010	10.0
100-01-6	4-Nitroaniline	25.0	U	0.010	25.0
98-95-3	Nitrobenzene	10.0	U	0.010	10.0
100-02-7	4-Nitrophenol	25.0	U	0.010	25.0
87-86-5	Pentachlorophenol	25.0	U	0.010	25.0
85-01-8	Phenanthrene	10.0	U	0.010	10.0
108-95-2	Phenol	10.0	U	0.010	10.0
129-00-0	Pyrene	10.0	U	0.010	10.0
621-64-7	N-Nitroso-di-n-propylamine	10.0	U	0.010	10.0

9/8/03

Lab Name: GCAL		Sample ID SI	KGW62A-1014	4	
Lab Code: LA024	Case No.:	Contract:			
SAS No.:	SDG No.: 205061509	Lab File ID: 20	50714/B0330		<u>_</u>
Matrix: Water		Lab Sample ID:	2050615091	12	
Sample wt/vol: 1000	Units: mL	Date Collected:	06/15/05	Time:	1130
Level: (low/med) LOW		Date Received:	06/16/05	_	
% Moisture:	decanted (Y/N)	Date Extracted:	06/20/05		
GC Column: DB-5MS-3	OM D:25 (mm)	Date Analyzed:	07/14/05	Time:	1455
Concentrated Extract Vol	ıme: <u>1000</u> (μὶ)	Dilution Factor:	1	Analy:	st: JAR3
Injection Volume:	1.0 (µL)	Prep Method:	OLM4.2 SVO	A	
GPC Cleanup: (Y/N) N	pH:	Analytical Metho	od: OLMO 4	2	
		Instrument ID:	MSSV3		
CONCENTRATION UNIT	S: ug/L	Prep Batch: 2	93939	Analytical Bat	ch: <u>295505</u>
CAS NO. COMP	OUND	RESULT	Q	MDL	RL
86-30-6 N-Nitros	odiphenylamine	10.0	U	0.010	10.0
95-48-7 o-Creso		10.0	U	0.010	10.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW	62A-1014	
Lab Code: LA024 Case No.:	Contract:		
SAS No.: SDG No.: 205061509	Lab File ID: 20507	14/B0330	
Matrix: Water	Lab Sample ID: 20	0506150912	·····
Sample wt/vol: Units:	Date Collected: 06	3/15/05 Time:	1130
Level: (low/med)	Date Received: 06	6/16/05	
% Moisture: not dec.	Date Extracted:		
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07	7/14/05 Time:	1455
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1	Analys	t: JAR3
Injection Volume: 1.0 (µL)	Prep Method:		
GPC Cleanup: (Y/N) N pH:	Analytical Method:	SW-846 8270C	
	Instrument ID: MS	SV3	
Number TICs Found: 1			
CONCENTRATION UNITS:			
CAS NO. COMPOUND	RT	EST. CONC.	Q
1. 134-62-3 Diethyltoluamide	3.846	5.43	

Lab Name: GCAL	Sample ID: SKGW60	-1014	
Lab Code: LA024 Case No :	Contract:		
SAS No.: SDG No.: 205061509	Lab File ID: 2050714	/B0331	
Matrix Water	Lab Sample ID: 2050	6150921	
Sample wt/vol: 940 Units: mL	Date Collected: 06/10	5/05 Time:	1335
Level: (low/med) LOW	Date Received: 06/17	7/05	
% Moisture: decanted: (Y'N)	Date Extracted: 06/20)/05	
GC Column: D8-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14	1/05 Time	: 1515
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1	Analy	st JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.	2 SVOA	
GPC Cleanup: (Y/N) N pH:	Analytical Method: O	LMO 4.2	
	Instrument ID: MSSV	3	
CONCENTRATION UNITS: ug/L	Prep Batch: 293939	Analytical Ba	tch: 295505
CAS NO. COMPOUND	RESULT Q	MDL	RL
95-95-4 2,4,5-Trichloropheno	10.6 U	0.011	10,6
88-06-2 2,4,6-Trichlorophenal	10.6 U	0.011	10.6
120-83-2 2,4-Dichlorophenol	10.6 U	0.011	10.6
51-28-5 2,4-Dinitrophenol	26.6 U	0.011	26.6
121-14-2 2,4-Dinitrotoluene	10.6 U	0.011	10.6
606-20-2 2,6-Dinitrotoluene	10.6 U	0.011	10.6
91-58-7 2-Chloronaphthalene	10.6 U	0.011	10.6
95-57-8 2-Chigrophenol	10.6 U	0.011	10.6
91-57-6 2-Methylnaphthalene	10.6 U	0.011	10.6
88-74-4 2-Nitroaniine	26.6 U	0.011	26.6
88-75-5 2-Nitrophenol	10.6 U	0.011	10.6
91-94-1 3.3'-Dichlorobenzidine	10.6 U	0.011	10.6
99-09-2 3-Nitroaniline	26.6 U	0.011	26.6
534-52-1 2-Methyl-4,6-din/trophenol	25.6 U	0.011	26.6
59-50-7 4-Chloro-3-methylphenoi	10.6 U	0.011	10.6
106-47-8 4-Chloroaniline	10.6 U	0.011	10.6
7005-72-3 4-Chlorophenyl-phenylether	10.6 U		10.6
106-44-5 4-Methylphenol (p-Cresol)	10.6 U	0.011	10.6
83-32-9 Acenaphthene	10.6 U	0.011	10.6
208-96-8 Acenaphthylene	10.6 U	0.011	10.6
120-12-7 Anthracene	10.6 U	0.011	10.6
56-55-3 Benzo(a)anthracene	10.6 U	0.011	10.6
50-32-8 Benzo(a)pyrene	10.6 U	0.011	10.6
205-99-2 Benzo(b)fluoranthene	10.6 U	0.011	10.6
191-24-2 Benzo(g,h,i)perytere	10.6 U	0.011	10.6
207-08-9 Benzo(k)fluoranthene	10.6 U	0.011	10.6
111-91-1 Bis(2-Chloroethoxy methane	10.6 U	0.011	10.6
111-44-4 Bis(2-Chloroethy)ether	10.6 U	0.011	10.6
108-60-1 bis(2-Chloroisopropy ether	10.6 U	0.011	10.6
PROCESS CONTRACTOR CON	10.0	Ų.U I I	10.0

Lab Name: GC	CAL	Sample ID:	SKGW60-10	014		
Lab Code: LAC	24 Case No.:	Contract:				_
SAS No.:	SDG No.: 205061509	Lab File ID:	2050714/B0	331		
Matrix: Water		Lab Sample ID	D: <u>205061</u>	50921		
Sample wt/vol:	940 Units: mL	Date Collected	d: 06/16/0	5 Time:	1335	
•	LOW	Date Received				
	decanted: (Y/N)	Date Extracted				_
_	B-5MS-30M ID: .25 (mm)	Date Analyzed	1: 07/14/0	5 Time	: 1515	
_	tract Volume: 1000 (µL)	Dilution Factor	r: <u>1</u>	Analy	yst: JAR3	
	: (,µL)	Prep Method:	OLM4.2 S	SVOA		
	//N) N pH:	Analytical Met	hod: OLM	IO 4.2		_
O. O O.O		Instrument ID:	MSSV3			
CONCENTRATIO	ON UNITS: ug/L	Prep Batch:		Analytical Ba	itch: 295505	
CAS NO.	COMPOUND	RESULT		MDL	RL	
117-81-7	bis(2-ethylhexyl)phthalate	10.0984	JB	0.011	10.6	٦u
101-55-3	4-Bromophenyl-phenylether	10.6	U	0.011	10.6	1
85-68-7	Butylbenzylphthalate	10.6	Ü	0.011	10.6	┪
86-74-8	Carbazole	10.6	U	0.011	10.6	7
218-01-9	Chrysene	10.6	Ū	0.011	10.6	┪
84-74-2	Di-n-butylphthalate	10.00.887	JB	0.011	10.6	٦u
117-84-0	Di-n-octylphthalate	10.6	U	0.011	10.6	٦,
53-70-3	Dibenz(a,h)anthracene	10.6	U	0.011	10.6	7
132-64-9	Dibenzofuran	10.6	U	0.011	10.6	-
84-66-2	Diethylphthalate	10.6	Ū	0.011	10.6	┪
131-11-3	Dimethyl-phthalate	10.6	U	0.011	10.6	┑
105-67-9	2,4-Dimethylphenol	10.6	U	0.011	10.6	-
206-44-0	Fluoranthene	10.6	U	0.011	10.6	┪
86-73-7	Fluorene	10.6	U	0.011	10.6	7
118-74-1	Hexachlorobenzene	10.6	U	0.011	10.6	7
87-68-3	Hexachlorobutadiene	10.6	U	0.011	10.6	┑
77-47-4	Hexachlorocyclopentadiene	10.6	U	0.011	10.6	_
67-72-1	Hexachloroethane	10.6	U	0.011	10.6	1
193-39-5	Indeno(1,2,3-cd)pyrene	10.6	U	0.011	10.6	7
78-59-1	Isophorone	10.6	U	0.011	10.6	7
91-20-3	Naphthalene	10.6	U	0.011	10.6	~
100-01-6	4-Nitroaniline	26.6	U	0.011	26.6	7
98-95-3	Nitrobenzene	10.6	U	0.011	10.6	ヿ゙
100-02-7	4-Nitrophenol	26.6	U	0.011	26.6	7
87-86-5	Pentachlorophenol	26.6	U	0.011	26.6	7
85-01-8	Phenanthrene	10.6	υ	0.011	10.6	7
108-95-2	Phenol	10.6	U	0.011	10.6	7
129-00-0	Pyrene	10.6	υ	0.011	10.6	٦
204 24 7	NI NPC P	40.0		0.044	40.0	7

9/8/05

Lab Name: GCAL		Sample ID: S	SKGW60-10)14	
Lab Code: LA024 Case No.:		Contract:			
SAS No.: SDG No.:	5061509	Lab File ID: 2	205 0714/B0	331	
Matrix: Water		Lab Sample ID	2050615	60921	
Sample wt/vol: 940 Units: mL		Date Collected	: 06/16/05	Time:	1335
Level: (low/med) LOW		Date Received	06/17/05	<u> </u>	
% Moisture: decanted: (YN)		Date Extracted	: 06/20/05	<u> </u>	
GC Column: <u>DB-5MS-30M</u> ID: <u>.25</u>	(mm)	Date Analyzed	07/14/05	Time	: 1515
Concentrated Extract Volume: 1000	(µL)	Dilution Factor	: <u>1</u>	Analy	st JAR3
Injection Volume: 1.0	(µL)	Prep Method:	OLM4.2 S	VOA	
GPC Cleanup: (Y/N) N pH:		Analytical Meth	vod: OLM	042	
		instrument ID:	MSSV3		
CONCENTRATION UNITS: ug/L		Prep Batch:	293939	Analytical Ba	tich: <u>295505</u>
CAS NO. COMPOUND		RESULT	Q	MDL	RL
86-30-6 N-Nitrosodiphenylamine	·	10.6	U	0.011	10.6
95-48-7 o-Cresol		10.6	υ	0.011	10.6

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKGW60-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: _205061509	Lab File ID: 2050714/B0331
Matrix: Water	Lab Sample ID: 20506150921
Sample wt/vol: Units:	Date Collected: 06/16/05 Time: 1335
Level: (low/med)	Date Received: 06/17/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1515
Concentrated Extract Volume: 1000 (µL)	Dilutton Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
	Instrument ID: MSSV3
Number TICs Found: 1	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1. 603-11-2 1,2-Benzenedicarboxylic acid,	6.279 11.7

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SKGV	V58-1014	
Lab Code: LA024 Case No.:	Contract:		
SAS No.: SDG No.: 205061509	Lab File ID: 20507	14/B0332	
Matrix: Water	Lab Sample ID: 20	0506150922	
Sample wt/vol: 1000 Units: mL	Date Collected: 06	5/16/05 Time:	1005
Level: (low/med) LOW	Date Received: 06	5/17/05	
% Moisture: decanted: (Y/N)	Date Extracted: 06	i/20/05	
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07	7/14/05 Time	1534
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1	Analy	st JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLJ	44.2 SVOA	
	Analytical Method:	OLMO 4.2	
GPC Cleanup: (Y/N) N pH:	Instrument ID: MS		
CONCENTRATION UNITS: ug/L	Prep Batch: 2939		tch: 295505
CAS NO. COMPOUND	·	MDL	RL
	RESULT		
95-95-4 2,4,5-Trichlorophenol	10.0	U 0.010	10.0
88-06-2 2,4,6-Trichlorophenol	10.0	U 0.010	10.0
120-83-2 2,4-Dichlorophenol	10.0	U 0.010	10.0
51-28-5 2,4-Dinitrophenol	25.0	U 0.010	25.0
121-14-2 2,4-Dinitrololuene	16.0	U 0.010	10.0
606-20-2 2,6-Dinitrotoluene	10.0	U 0.010	10.0
91-58-7 2-Chloronaphthalene	10.0	U 0.010	10.0
95-57-8 2-Chilorophenol	10.0	U 0.010	10.0
91-57-6 2-Methylnaphthalene	10.0	U 0.010	10.0
88-74-4 2-Nitroaniline	25.0	U 0.010	25.0
88-75-5 2-Nitrophenol	10.0	J 0.010	10.0
91-94-1 3,3-Dichlorobenzidine	10.0	J 0.010	10.0
99-09-2 3-Nitroaniline	25.0	J 0.010	25.0
534-52-1 2-Methyl-4,6-dinitrophenol	25.0	J 0.010	25.0
59-50-7 4-Chloro-3-methylphenol	10.0	J 0.010	10.0
106-47-8 4-Chloroaniine	100	J 0.010	10.0
7005-72-3 4-Chlorophenyl-pherylether	10.0	J 0.010	10.0
106-44-5 4-Methylphenol (p-C'esoi)	10.0	J 0.010	10.0
83-32-9 Acenaphthene	10.0	J 0.010	10.0
208-96-8 Acenaphthylene	*0.0 l	J 0.010	10.0
120-12-7 Anthracene	10.0 l	J 0.010	10.0
56-55-3 Benzo(a)anthracene	10.0 L	J 0.010	10.0
50-32-8 Benzo(a)pyrene	10.0	J 0.010	10.0
205-99-2 Benzo(b)fluoranthene	10.0 L	J 0.010	10.0
191-24-2 Benzo(g,h,i)perylene	10.0	J 0.010	10.0
207-08-9 Benzo(k)fluoranthene	10.0 l	0.010	10.0
111-91-1 Bis(2-Chloroethoxy)methane	10.0 l	0.010	10.0
111-44-4 Bis(2-Chloroethyl)ether	• 0.0 · (0.010	10.0
108-60-1 bis(2-Chloroisopropy ether	.5.5 r	J 0.010	10.0

Lab Name: GC	CAL	Sample ID:	SKGW58-10	014		
Lab Code: LAC	024 Case No.:	Contract:	···			
SAS No.:	SDG No.: 205061509	Lab File ID:	2050714/B0	332		
Matrix: Water		Lab Sample ID	D: 205061	50922		
Sample wt/vol:	1000 Units: mL	Date Collected	d: 06/16/0	5 Time:	1005	
Level: (low/med)		Date Received	d: 06/17/0	5		
% Moisture:	decanted: (Y/N)	Date Extracted	d: 06/20/0	5		
GC Column: DI	3-5MS-30M ID: .25 (mm)	Date Analyzed	1: 07/14/0	5 Time	: 1534	
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor	r: <u>1</u>	Anal	yst: JAR3	
Injection Volume	: (µL)	Prep Method:	OLM4.2 S	SVOA		
GPC Cleanup: ((/N) N pH:	Analytical Met	hod: OLM	O 4.2		
		Instrument ID:	MSSV3			
CONCENTRATIO	ON UNITS: ug/L	Prep Batch:	293939	Analytical Ba	itch: 295505	
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
117-81-7	bis(2-ethylhexyl)phthalate	10.00	JB	0.010	10.0	Ju
101-55-3	4-Bromophenyl-phenylether	10.0	U	0.010	10.0	7
85-68-7	Butylbenzylphthalate	10.0	U	0.010	10.0	7
86-74-8	Carbazole	10.0	U	0.010	10.0	7
218-01-9	Chrysene	10.0	U	0.010	10.0	7
84-74-2	Di-n-butylphthalate	10.0	U	0.010	10.0	7
117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0	7
53-70-3	Dibenz(a,h)anthracene	10.0	U	0.010	10.0	┫
132-64-9	Dibenzofuran	10.0	U	0.010	10.0	7
84-66-2	Diethylphthalate	10.0	U	0.010	10.0	7
131-11-3	Dimethyl-phthalate	10.0	U	0.010	10.0	7
105-67-9	2,4-Dimethy/phenol	10.0	U	0.010	10.0	7
206-44-0	Fluoranthene	10.0	U	0.010	10.0	7
86-73-7	Fluorene	10.0	Ü	0.010	10.0	7
118-74-1	Hexachlorobenzene	10.0	U	0.010	10.0	7
87-68-3	Hexachlorobutadiene	10.0	U	0.010	10.0	7
77-47-4	Hexachlorocyclopentadiene	10.0	U	0.010	10.0	7
67-72-1	Hexachioroethane	10.0	U	0.010	10.0	7
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	0.010	10.0	7
78-59-1	Isophorone	10.0	U	0.010	10.0	7
91-20-3	Naphthalene	10.0	U	0.010	10.0	7
100-01-6	4-Nitroaniline	25.0	U	0.010	25.0	7
98-95-3	Nitrobenzene	10.0	U	0.010	10.0	7
100-02-7	4-Nitrophenol	25.0	U	0.010	25.0	7
87-86-5	Pentachlorophenol	25.0	U	0.010	25.0	7
85-01-8	Phenanthrene	10.0	U	0.010	10.0	7
108-95-2	Phenol	10.0	U	0.010	10.0	7
129-00-0	Pyrene	10.0	U	0.010	10.0	7
CO4 C4 7	N. Alikana di a manulamina	40.0	11	0.040	40.0	7

9/8/05

Lab Name: GCAL	Sample ID: SKGW58-1014
Lab Code: LA024 Case No.:	Contract
SAS No.: SDG No.: 205061509	Lab File ID: 2050714/B0332
Matric Water	Lab Sample ID: 20506150922
Sample wt/vot: 1000 Units: mL	Date Collected: 06/16/05 Time: 1005
Level: (low/med) LOW	Date Received: 06/17/05
% Moisture: decanted: (Y*N)	Date Extracted: 06/20/05
GC Column: DB-5MS-30M ID: 25 (mm)	Date Analyzed: 07/14/05 Time: 1534
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVQA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

İF SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Sample ID: SKGW58-1014
Contract:
Lab File ID: 2050714/B0332
Lab Sample ID: 20506150922
Date Collected: 06/16/05 Time: 1005
Date Received: 06/17/05
Date Extracted:
Date Analyzed: <u>07/14/05</u> Time: <u>1534</u>
Dilution Factor: 1 Analyst: JAR3
Prep Method:
Analytical Method: SW-846 8270C
Instrument ID: MSSV3
RT EST. CONC. Q
6.278 5.74
n)

Lab Name: GCAL	Sample ID: SI	KGW06R-10	14	
Lab Code: LA024 Case No.:	Contract:			· · · · · · · · · · · · · · · · · · ·
Matric Water	SAS No.:		SDG No.:	205061509
Sample welvol: 1000 Units: mL	Lab Sample ID:	205061509	201	
Level: (low/med) LOW	Date Collected:	06/14/05	Time:	1515
% Moisture: decanted: (Y/N)	Date Received:	06/15/05		
GC Column: ID: (mm)	Date Extracted:	06/20/05		
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/24/05	Time:	0435
Soil Aliquot Volume: (µL)	Dilution Factor:	1	Analys	t <u>TLS</u>
Injection Volume: 1 (µL)	Prep Method:	OLM4.2 PE	ST/PCB	
GPC Cleanup: (Y/N) N pH:	Analytical Metho	d: OLMO	42	
Prep Batch: 293936 Analytical Batch: 294768	Sulfur Cleanup:	(Y/N) N	Instrument I	D: GCS12A
CONCENTRATION UNITS: Up/L	Lab File ID:	205062	3/SV12A019	
CAS NO. COMPOUND	RESULT	Q	MDL	RL
72-54-8 4,4-000	0.100	U	0.000100	0.100
72-55-9 4,4-00E	0.10C	U	0.000100	0.100
50-29-3 4,4'-DDT	0.100	Ü	0.000100	0.100
309-00-2 Aldrin	0.050	U	0.000100	0.050
12674-11-2 Araclar-1016	1.00	Ü	0.000100	1.00
11104-28-2 Aroclor-1221	2.00	IJ	0.000100	2.00
11141-16-5 Aroclor-1232	1.00	U	0.000100	1.00
53489-21-9 Aroclor-1242	1.00	U	0.000100	1.00
12672-29-6 Aractor-1248	1.00	U	0.000100	1.00
11097-89-1 Aroclor-1254	1.00	U	0.000100	1.00
11096-82-5 Araciar-1260	1.0C	U	0.000100	1.00
80-57-1 Dieldrin	0.100	U	0.000100	0.100
950-86-8 Endosulfan i	0.050	U	0.000100	0.050
33213-65-9 Endoeulien II	0.100	υ	0.000100	0.100
1031-07-8 Endosulian sulfate	0.100	U	0.000100	0.100
72-20-8 Endrin	0.100	U	0.000100	0.100
7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100
53494-70-5 Endrin ketone	0.100	U	0.000100	0.100
76-44-8 Heptachior	0.050	Ü	0.000100	0.050
1024-57-3 Heptachlor eposide	0.050	U	0.000100	0.050
72-43-5 Methasychlar	0.500	U	0.000100	0.500
8001-35-2 Toxaphene	5.00	U	0.000100	5.00
319-84-6 alpha-BHC	0.050	U	0.000100	0.050
5103-71-9 slphe-Chlordene	0.050	U	0.000100	0.050
319-85-7 beta-BHC	0.050	U	0.000100	0.050
319-86-8 deta-BHC	0.050	U	0.000100	0.050
58-89-9 gamma-BHC (Lindane)	0.050	U	0.000100	0.050
5103-74-2 gamme-Chlordane	0.050	U	0.000100	0.050

Lab Name: GCAL	Sample ID: SKGW07R-1014
Lab Code: LA024 Case No.:	Contract:
Matrix: Water	SAS No.: SDG No.: 205061509
Sample wt/vol: 1000 Units: mL	Lab Sample ID: 20506150902
Level: (low/med) LOW	Date Collected: 06/14/05 Time: 1555
% Moisture: decanted: (Y/N)	Date Received: 06/15/05
GC Column: ID: (mm)	Date Extracted: 06/20/05
Concentrated Extract Volume: 1000 (µL)	Date Analyzed: 06/24/05 Time: 0453
Soil Aliquot Volume: (µL)	Dilution Factor: 1 Analyst: TLS
Injection Volume: 1 (µL)	Prep Method: OLM4.2 PEST/PCB
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
Prep Batch: 293938 Analytical Batch: 294768	Sulfur Cleanup: (Y/N) N Instrument ID: GCS12A
CONCENTRATION UNITS: ug/L	Lab File ID: 2050623/SV12A020
CAS NO. COMPOUND	RESULT Q MDL RL
72-54-8 4,4-DDD	0.100 U 0.000100 0.100
72-55-9 4,4'-DDE	0.100 U 0.000100 0.100
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100
309-00-2 Aldrin	0.050 U 0.000100 0.050
12674-11-2 Aroclor-1016	1.00 U 0.000100 1.00
11104-28-2 Aroclor-1221	2.00 U 0.000100 2.00
11141-16-5 Aroclor-1232	1.00 U 0.000100 1.00
53469-21-9 Aroclor-1242	1.00 U 0.000100 1.00
12672-29-6 Arocior-1248	1.00 U 0.000100 1.00
11097-69-1 Aroclor-1254	1.00 U 0.000100 1.00
11096-82-5 Aroclor-1260	1.00 U 0.000100 1.00
60-57-1 Dieldrin	0.100 U 0.000100 0.100
959-98-8 Endosulfan I	0.050 U 0.000100 0.050
33213-65-9 Endosulfan II	0.100 U 0.000100 0.100
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100
72-20-8 Endrin	0.100 U 0.000100 0.100
7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100
53494-70-5 Endrin ketone	0.100 U 0.000100 0.100
76-44-8 Heptachlor	0.050 U 0.000100 0.050
1024-57-3 Heptachlor epoxide	0.050 U 0.000100 0.050
72-43-5 Methoxychlor	0.500 U 0.000100 0.500
8001-35-2 Toxaphene	5.00 U 0.000100 5.00
319-84-6 alpha-BHC	0.050 U 0.000100 0.050
5103-71-9 alpha-Chlordane	0.050 U 0.000100 0.050
319-85-7 beta-BHC	0.050 U 0.000100 0.050
319-86-8 delta-BHC	0.050 U 0.000100 0.050
58-89-9 gamma-BHC (Lindane)	0.050 U 0.000100 0.050
5103-74-2 gamma-Chlordane	0.050 U 0.000100 0.050

Lab Name: GCAL	Sample ID: SK	(GW59-1014		
Lab Code: LA024 Case No.	Contract:			
Matrix Water	· · · · · · · · · · · · · · · · · · ·		SDG No.:	205061509
Sample wtVol: 1000 Units: ml.	Lab Sample ID:	205061509	07	
Levet: (low/med) LOW	Date Collected:	06/15/05	Time:	1310
% Moisture: decanted: (Y/N)	Date Received:	06/16/05		
GC Column: ID: (mm)	Date Extracted:	06/20/05		
Concentrated Ediract Volume: 1000 (µL)		06/24/05	Time:	0511
Sail Aliquat Valume: (µl.)				t ns
Injection Volume: 1 (µL				
GPC Cleanup: (Y/N) N pH:	_			
Prep Batch: 293938 Analytical Batch: 294768	Sulfur Cleanup: ((YN) <u>N</u>	Instrument I	D: GCS12A
CONCENTRATION UNITS: ug/L	Lab File ID:	2050623	VSV12A021	
CAS NO. COMPOUND	RESULT	Q	MDL	RL
72-54-8 4,4-000	0.100	U	0.000100	0.100
72-65-0 4,4-DOE	0.100	5	0.000100	0.100
50-29-3 4,4°-00T	0.100	υ	0.000100	0.100
309-00-2 Aldrin	0.050	Ü	0.000100	0.050
12674-11-2 Araclar-1016	1.00	U	0.000100	1.00
11104-28-2 Aroclor-1221	2.00	U	0.000100	2.00
11141-16-5 Aroctor-1232	1.00	U	0.000100	1.00
53489-21-9 Araclar-1242	1,00	Ü	0.000100	1.00
12672-29-6 Aractor-1248	1.00	U	0.000100	1.00
11097-89-1 Aroctor-1254	1.00	Ü	0.000100	1.00
11098-82-5 Aroclor-1260	1.00	U	0.000100	1.00
80-57-1 Dieldrin	0 100	Ų	0.000100	0.100
959-98-8 Endosulfan I	0.050	U	0.000100	0.050
33213-65-9 Endosulfan II	0.100	U	0.000100	0.100
1031-07-8 Endoeulfan sulfate	0.100	Ü	0.000100	0.100
72-20-8 Endrin	0.100	U	0.000100	0.100
7421-03-4 Endrin aldehyde	0.101	U	0.000100	0.100
53494-70-5 Endrin ketone	0.100	U	0.000100	0.100
78-44-8 Heptachlor	0.050	U	0.000100	0.050
1024-57-3 Heptachlor eposide	0.050	U	0.000100	0.050
72-43-5 Methosychiar	0.500	U	0.000100	0.500
8001-35-2 Toxaphene	5.90	Ü	0.000100	5.00
319-84-6 alpha-BHC	0.050	U	0.000100	0.050
5103-71-9 alpha-Chlordane	0.050	U	0.000100	0.050
319-85-7 beta-BHC	0.05€	U	0.000100	0.050
319-86-8 delta-BHC	0.050	U	0.000100	0.050
58-89-9 gamma-BHC (Lindane)	0.050	U	0.000100	0.050
5103-74-2 gamma-Chlordane	0.050	U	0.000100	0.050
				

Lab Name: GCAL	Sample ID: SKGW61-1014
Lab Code: LA024 Case No.:	Contract:
Matrix: Water	SAS No.: SDG No.: 205061509
Sample wt/vol: 1000 Units: mL	Lab Sample ID: 20506150909
Level: (low/med) LOW	Date Collected: 08/15/05 Time: 1445
% Moisture: decanted: (Y/N)	Date Received: 06/16/05
GC Column: ID: (mm)	Date Extracted: 06/20/05
Concentrated Extract Volume: 1000 (µL)	Date Analyzed: 06/24/05 Time: 0546
Soil Aliquot Volume: (µL)	Dilution Factor: 1 Analyst: TLS
Injection Volume: 1 (µL)	Prep Method: OLM4.2 PEST/PCB
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
Prep Batch: 293938 Analytical Batch: 294768	Sulfur Cleanup: (Y/N) N Instrument ID: GCS12A
CONCENTRATION UNITS: ua/L	Lab File ID: 2050623/SV12A023
CAS NO. COMPOUND	RESULT Q MDL RL
72-54-8 4,4'-DDD	0.100 U 0.000100 0.100
72-55-9 4,4'-DDE	0.100 U 0.000100 0.100
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100
309-00-2 Aldrin	0.050 U 0.000100 0.050
12674-11-2 Aroclor-1016	1.00 U 0.000100 1.00
11104-28-2 Aroclor-1221	2.00 U 0.000100 2.00
11141-16-5 Aroclor-1232	1.00 U 0.000100 1.00
53469-21-9 Aroclor-1242	1.00 U 0.000100 1.00
12672-29-6 Aroclor-1248	1.00 U 0.000100 1.00
11097-69-1 Aroclor-1254	1.00 U 0.000100 1.00
11096-82-5 Aroclor-1260	1.00 U 0.000100 1.00
60-57-1 Dieldrin	0.100 U 0.000100 0.100
959-98-8 Endosulfan I	0.050 U 0.000100 0.050
33213-65-9 Endosulfan II	0.100 U 0.000100 0.100
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100
72-20-8 Endrin	0.100 U 0.000100 0.100
7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100
53494-70-5 Endrin ketone	0.100 U 0.000100 0.100
76-44-8 Heptachlor	0.050 U 0.000100 0.050
1024-57-3 Heptachlor epoxide	0.050 U 0.000100 0.050
72-43-5 Methoxychlor	0.500 U 0.000100 0.500
8001-35-2 Toxaphene	5.00 U 0.000100 5.00
319-84-6 alpha-BHC	0.050 U 0.000100 0.050
5103-71-9 alpha-Chlordane	0.050 U 0.000100 0.050
319-85-7 beta-BHC	0.050 U 0.000100 0.050
319-86-8 delta-BHC	0.050 U 0.000100 0.050
58-89-9 gamma-BHC (Lindane)	0.050 U 0.000100 0.050
5103-74-2 gamma-Chlordane	0.050 U 0.000100 0.050

Lab Code: LA024 Case No : Contract:	Lab Nernex GCAL	Sample ID: SI	KGW64-101			<u></u>
Maritic Water SAS No: SDG No. 205081509	Lab Code: LA024 Case No :	Contract:				
Level: (low/mard) LOW		SAS No.:		SDG No.:	205061509	
Level: (low/mard) LOW	Semple withol: 1000 Units: ml.	Lab Samole ID:	20506150	<u> </u>	_	
Second Common Description		·			0945	
CC Column: ID: (mm) Date Extracted: 08/20/05 Time: 0604						_
Concentrated Estract Volume: 1000 (j.k.) Date Analyzed: 06/24/05 Time: 0604			U0/10/U3			
Soil Aliquot Volume:	GC Column: 1D: (mm)	Date Extracted:	06/20/05			_
Prop Method: OLMA 2 PESTAPCB	Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/24/05	Time:	0604	
Prop Batch: 293936	Soil Aliquot Volume: (µL)	Dilution Factor:	1	Analys	t TLS	_
Prop Batch: 293936		Prep Method:	OLM4.2 PE	ST/PCB		
CONCENTRATION UNITS: Upl. CAS NO. COMPOUND RESULT Q NDL RL 72-54-8 4,4-DDD 0.100 U 0.000100 0.100 0.100 U 0.000100 0.050 U 0.000100 0.050 U 0.000100 1.00 U 0.000100 0.100 U 0.000100 0.000 U 0.000100 0.0000 U 0.000100 0.0000 U 0.000100 0.0000 U 0.00000 U 0.0000			d: OLMO	4.2		
CAS MO. COMPOUND RESULT Q MDL RL 72-64-8 4,4-DDD 0.100 U 0.000100 0.100 Q-72-65-9 4,4-DDE 0.100 U 0.000100 0.100 Q-72-65-9 Q	Prep Betch: 293938 Analytical Betch: 294768	Sulfur Cleanup:	(YM) N	Instrument I	D: GCS12A	
72-54-8	CONCENTRATION UNITS: upl.	Lab File ID:	205062	3/5V12A024		
72-55-9 4,4-DOE	CAS NO. COMPOUND	RESULT	Q	MDL	RL	
S0-29-3 4,4-DDT	72-54-8 4,4-000	0.100	U	0.000100	0.100	レルト
309-00-2 Albrin 0.050 U 0.000100 0.050 12674-11-2 Arockor-1016 1.00 U 0.000100 1.00 11104-28-2 Arockor-1221 2.00 U 0.000100 2.00 11141-18-5 Arockor-1232 1.00 U 0.000100 1.00 12672-29-6 Arockor-1242 1.00 U 0.000100 1.00 12672-29-6 Arockor-1248 1.00 U 0.000100 1.00 12672-29-6 Arockor-1248 1.00 U 0.000100 1.00 11097-69-1 Arockor-1254 1.00 U 0.000100 1.00 11097-69-1 Arockor-1254 1.00 U 0.000100 1.00 11096-62-5 Arockor-1260 1.00 U 0.000100 1.00 11096-62-5 Arockor-1260 1.00 U 0.000100 1.00 1.00 1006-62-5 Arockor-1260 1.00 U 0.000100 0.100 1.00 1006-62-5 Arockor-1260 1.00 U 0.000100 0.100 1006-62-5 Arockor-1260 U 0.000100 0.100 1006-62-5 Arockor-1260 U 0.000100 0.000 0.000 1006-62-5 Arockor-1260 U 0.000100 0.100 1006-62-5 Arockor-1260 U 0.000100 0.100 0.000 1006-62-5 Arockor-1260 U 0.000100 0.100 0.000100 0.100 0.000100 0.100 0.000100 0.100 0.000100 0.100 0.00010	72-55-9 4,4-DOE	0.100	U	0.000100	0.100	□ i
12674-11-2 Aroclor-1016	50-29-3 4,4'-DOT	0.100	U	0.000100	0.100	□ }
11104-28-2	309-00-2 Aldrin	0.050	U	0.000100	0.050] [
11141-16-5 Aroctor-1232	12674-11-2 Aractor-1016	1.00	U	0.000100	1.00	
53489-21-9 Aroclor-1242 1.00 U 0.000100 1.00 12672-29-6 Aroclor-1248 1.00 U 0.000100 1.00 11097-69-1 Aroclor-1254 1.00 U 0.000100 1.00 11096-82-5 Aroclor-1280 1.00 U 0.000100 1.00 11096-82-5 Aroclor-1280 1.00 U 0.000100 1.00 1009-82-6 Endosullan I 0.100 U 0.000100 0.100 959-98-8 Endosullan I 0.050 U 0.000100 0.050 33213-85-9 Endosullan sullate 0.100 U 0.000100 0.100 1031-07-8 Endosullan sullate 0.100 U 0.000100 0.100 1031-07-8 Endosullan sullate 0.100 U 0.000100 0.100 72-20-8 Endin sullate 0.100 U 0.000100 0.100 72-40-8 Endin sullate 0.100 U 0.000100 0.100 7421-93-4 Endin sullate 0.100 U 0.000100 0.050 7421-93-4 Endin sullate 0.10	11104-28-2 Araclar-1221	2.00	Ü	0.000100	2.00	_1 }
12672-29-8 Aroctor-1248	11141-16-5 Aroctor-1232	1.00	Ų	0.000100	1.00	\Box
11097-69-1 Aroctor-1254	53469-21-9 Aractor-1242	1.00	Ų	0.000100	1.00	
11086-82-5 Arccior-1280	12672-29-6 Aractor-1248	1.00	C	0.000100	1.00	□ }
District	11097-89-1 Aroctor-1254	1 00	U	0.000100	1.00	
950-96-8	11098-82-5 Aractor-1280 .	1.00	Ü	0.000100	1.00	\neg \bot
33213-85-9 Endosulfan II	80-57-1 Dieldrin	0.100	U	0.000100	0.100	
1031-07-8 Endoeulian suliste 0.193 U 0.000100 0.100 72-20-8 Endrin 0.100 U 0.000100 0.100 7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin latione 0.100 U 0.000100 0.100 76-44-8 Heptachtor 0.050 U 0.000100 0.050 1024-57-3 Heptachtor eposide 0.050 U 0.000100 0.050 72-43-5 Methasychlor 0.500 U 0.000100 0.500 8001-35-2 Taxaphene 5.00 U 0.000100 0.500 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindene) 0.050 0.050	959-98-8 Endosulfan I	0.050	U	0.000100	0.050	7 1
72-20-8 Endrin 0.100 U 0.000100 0.100 7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin lastone 0.100 U 0.000100 0.100 78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor sposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-6 alphe-BHC 0.050 U 0.000100 0.050 5103-71-9 alphe-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 dela-BHC (Lindene) 0.050 U 0.000100 0.050 58-89-9 genum-BHC (Lindene) 0.050 U 0.000100 0.050	33213-65-9 Endosulfan II	0.100	U	0.000100	0.100	
7421-83-4 Endrin skiehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin katone 0.100 U 0.000100 0.100 76-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor spoxide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-8 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 sipha-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC (Lindene) 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindene) 0.050 U 0.000100 0.050	1031-07-8 Endosulfan sulfale	0.100	U	0.000100	0.100	7
53494-70-5 Endrin lastone 0.100 U 0.000100 0.100 76-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor spoxide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tossphene 5.00 U 0.000100 5.00 319-84-6 siphe-BHC 0.050 U 0.000100 0.050 5103-71-9 siphe-Chlordene 0.050 U 0.000100 0.050 319-85-7 bate-BHC 0.050 U 0.000100 0.050 319-86-8 delas-BHC (Lindene) 0.050 U 0.000100 0.050 58-89-9 gamme-BHC (Lindene) 0.050 U 0.000100 0.050	72-20-8 Endrin	0.100	Ų	0.000100	0.100	
76-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor spowde 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-6 slphe-BHC 0.050 U 0.000100 0.050 5103-71-9 slphe-Chfordene 0.050 U 0.000100 0.050 319-85-7 bate-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 genme-BHC (Lindene) 0.050 U 0.000100 0.050	7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100	\neg (
1024-57-3 Heptachtor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychtor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordene 0.050 U 0.000100 0.050 319-85-7 bata-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	53494-70-5 Endrin lastone	0.100	Ų	0.000100	0.100	
72-43-5 Methosychtor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	78-44-8 Heptachior	0.050	U	0.000100	0.050	
8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 slphs-BHC 0.050 U 0.000100 0.050 5103-71-9 slphs-Chlordene 0.050 U 0.000100 0.050 319-85-7 bits-BHC 0.050 U 0.000100 0.050 319-86-8 delts-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindene) 0.051 U 0.000100 0.050	1024-57-3 Heptachlor eposide	0.050	U	0.000100	0.050	_ \
319-84-6 alpha-BHC 0.050 U 0.000100 0.050	72-43-5 Methacychlor	0.500	U	0.000100	0.500	
5103-71-9 alphe-Chlordene 0.050 U 0.000100 0.050 319-85-7 bate-BHC 0.050 U 0.000100 0.050 319-86-8 delte-BHC 0.050 U 0.000100 0.050 58-89-9 gamme-BHC (Lindene) 0.050 U 0.000100 0.050	8001-35-2 Toxaphene	5.00	U	0.000100	5.00	–)
319-85-7 bate-BHC 0.050 U 0.000100 0.050 319-86-8 delb-BHC 0.050 U 0.000100 0.050 58-89-9 gamme-BHC (Lindene) 0.050 U 0.000100 0.050	319-84-6 alpha-BHC	0.050	U	0.000100	0.050	-
319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindene) 0.050 U 0.000100 0.050	5103-71-9 siphe-Chlordene	0.050	U	0.000100	0.050	— I
319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	319-85-7 beta-BHC	0.050	U	0.000100	0.050	-
58-89-9 gamme-BHC (Lindene) 6 351 U 0.000100 0.050	319-86-8 delta-BHC	0.050	Ú		0.050	-
	58-89-9 gamme-BHC (Lindane)		Ų)			- 1
						一

FORM | ORG-1

المحلود الم

Lab Name: GCAL	Sample ID: SKGW63-1014	
Lab Code: LA024 Case No.:	Contract:	
Matrix: Water	SAS No.: SDG No.: 205061509	
Sample wt/vol: 1000 Units: mL	Lab Sample ID: 20506150911	
Level: (low/med) LOW	Date Collected: 06/15/05 Time: 1035	
% Moisture: decanted: (Y/N)	Date Received: 06/16/05	
GC Column: ID: (mm)	Date Extracted: 08/20/05	
Concentrated Extract Volume: 1000 (µL)	Date Analyzed: 06/24/05 Time: 0622	
Soil Aliquot Volume: (µL)	Dilution Factor: 1 Analyst: TLS	
Injection Volume: 1 (µL)	Prep Method: OLM4.2 PEST/PCB	
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2	
Prep Batch: 293938 Analytical Batch: 294768		
CONCENTRATION UNITS: ug/L	Lab File ID: 2050623/SV12A025	_
CAS NO. COMPOUND	RESULT Q MDL RL	
72-54-8 4,4'-DDD	0.100 U 0.000100 0.100 U	1
72-55-9 4,4'-DDE	0.100 U 0.000100 0.100	١
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100	L
309-00-2 Aldrin	0.050 U 0.000100 0.050	١
12674-11-2 Aroclor-1016	1.00 U 0.000100 1.00	١
11104-28-2 Aroclor-1221	2.00 U 0.000100 2.00	ı
11141-16-5 Aroclor-1232	1.00 U 0.000100 1.00	1
53469-21-9 Aroclor-1242	1.00 U 0.000100 1.00	1
12672-29-6 Aroclor-1248	1.00 U 0.000100 1.00	١
11097-69-1 Aroclor-1254	1.00 U 0.000100 1.00	1
11096-82-5 Arocior-1260	1.00 U 0.000100 1.00	ı
60-57-1 Dieldrin	0.100 U 0.000100 0.100	l
959-98-8 Endosulfan I	0.050 U 0.000100 0.050	l
33213-65-9 Endosulfan II	0.100 U 0.000100 0.100	ı
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100	ı
72-20-8 Endrin	0.100 U 0.000100 0.100	
7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100	۱
53494-70-5 Endrin ketone	0.100 U 0.000100 0.100	1
76-44-8 Heptachlor	0.050 U 0.000100 0.050	
1024-57-3 Heptachlor epoxide	0.050 U 0.000100 0.050	t
72-43-5 Methoxychlor	0.500 U 0.000100 0.500	١
8001-35-2 Toxaphene	5.00 U 0.000100 5.00	١
319-84-6 alpha-BHC	0.050 U 0.000100 0.050	1
5103-71-9 alpha-Chiordane	0.050 U 0.000100 0.050	
319-85-7 beta-BHC	0.050 U 0.000100 0.050	1
319-86-8 delta-BHC	0.050 U 0.000100 0.050	1
58-89-9 gamma-BHC (Lindane)	0.050 U 0.000100 0.050	1
5103-74-2 gamma-Chlordane	0.050 U 0.000100 0.050	f

9 kylos

FORM | ORG-1

Lab Name:	GCAL	Sample ID: SK	(GW62A-101	4		_
Lab Code:	LA024 Case No.:	Contract:				
Matric <u>Wa</u>		SAS No:		SDG No.:	205061509	
Sample wt/vol	t: 1000 Units: mL	Lab Sample ID:	205061509	112		
Level: (low/m	ed) LOW	Date Collected:	06/15/05	Time:	1130	
% Moisture:	decanted: (YN)	Date Received:	06/16/05			
		Date Extracted:	06/20/05			
	Extract Volume: 1000 (µL.)			Time	0640	
						
	(µL)	Deuteon Hactor:	1	Analys	t ILS	
Injection Volu	mec (µL)	Prep Method:	OLM4.2 PES	тирсв		
GPC Cleanut	px (Y/N) N pH:	Analytical Methor	d: OLMO	4.2		_
Prep Betch:	293938 Analytical Batch: 294768	Sulfur Cleanup: ((Y/N) N	Instrument I	D: GCS12A	
CONCENTE!	ATION UNITS: Up/L	Lab File ID:	2050623	 VSV12A026	<u> </u>	
	•					
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	_
72-54-8	K.F-000	0.100	U	0.000100	0.100	u1
72-55- 0	4,4-DOE	0.100	U	0.000100	0.100	
50-29-3	4.4-00T	0.100	U	0.000100	0.100	\neg
309-00-2	Aldrin	0.050	U	0.000100	0.050	7
12674-11-2	Aroclar-1016	1.00	U	0.000100	1.00	7
	Arocker-1221	2.00	Ü	0.000100	2.00	7
11141-16-5	Aroclor-1232	1.00	U	0.000100	1.00	7 1
	Aroclor-1242	1.00	Ü	0.000100	1.00	┥ !
	Aroclor-1248	1.00	U	0.000100	1.00	-
11097-69-1	Aractor-1254	1.00	U	0.000100	1.00	-1 i
11096-82-5	Araciar-1280	1.00	U	0.000100	1.00	- }
80-57-1	Diekhin	0.100	U	0.000100	0.100	-
959-98-8	Endosulian I	C.C50	U	0.000100	0.050	\ }
	Endosulfan II	0.100	U	0.000100	0.100	
1031-07-8	Endosulfan sulfate	0.100	1	0.000100	0.100	-
72-20-8	Endrin	0.100		0.000100	0.100	-
7421-93-4	Endrin aldehyde	0.100	U	0.000100	0.100	-
	Endrin Issigne	0.100		0.000100	0.100	-
76-44-8	Heptachlor	0.050	- U	0.000100	0.050	- -
1024-57-3	Heptachior egoride	0.050	<u>_</u>	0.000100	0.050	— l
72-43-5	Methogothor	0.500		0.000100	0.500	
8001-35-2	Toughere	5.00		0.000100	5.00	-
319-84-6	alpha-BHC	0.050		0.000100	0.050	- 1
5103-71-9	siphe-Chlordane	0.050	 -	0.000100	0.050	→
319-85-7	beta-BHC	0.050 0.050		0.000100	0.050	-
319-86-8	delta-BHC	0.050 0.050				⊣ 1
58-89-9		0.050	U	0.000100	0.050	-
	gamma-BHC (Lindane)		U	0.000100	0.050	⊣ 1
5103-74-2	gamma-Chlordane	0.050	U	0.000100	0.050	

9/12/05

FORM | ORG-1

Lab Name: GCAL	Sample ID: SK	GW60-1014	1	
Lab Code: LA024 Case No.:	Contract:			
Matrix: Water	SAS No.:		SDG No.:	205061509
Sample wt/vol: 850 Units: mL	Lab Sample ID:	205061509	921	
Level: (low/med) LOW	Date Collected:	06/16/05	Time:	1335
% Moisture: decanted: (Y/N)	Date Received:	06/17/05		
GC Column: ID: (mm)	Date Extracted:	06/20/05		
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/24/05	Time:	0809
				t: TLS
Soil Aliquot Volume: (µL)		1	-	. 113
Injection Volume: 1 (µL)	Prep Method:	· · · · · · · · · · · · · · · · · · ·		
GPC Cleanup: (Y/N) N pH:	Analytical Method	: OLMO	4.2	
Prep Batch: 293938 Analytical Batch: 294768	Sulfur Cleanup: (Y/N) <u>N</u>	Instrument i	D: GCS12A
CONCENTRATION UNITS: ug/L	Lab File ID:	205062	3/SV12A031	
CAS NO. COMPOUND	RESULT	Q	MDL	RL
72-54-8 4,4'-DDD	0.118	U	0.000118	0.118
72-55-9 4,4'-DDE	0.118	U	0.000118	0.118
50-29-3 4,4'-DDT	0.118	U	0.000118	0.118
309-00-2 Aldrin	0.059	U	0.000118	0.059
12674-11-2 Aroclor-1016	1.18	U	0.000118	1.18
11104-28-2 Aroclor-1221	2.35	U	0.000118	2.35
11141-16-5 Aroclor-1232	1.18	U	0.000118	1.18
53469-21-9 Aroclor-1242	1.18	U	0.000118	1.18
12672-29-6 Aroclor-1248	1.18	U	0.000118	1.18
11097-69-1 Arockor-1254	1.18	U	0.000118	1.18
11096-82-5 Aroclor-1260	1.18	U	0.000118	1.18
60-57-1 Dieldrin	0.118	U	0.000118	0.118
959-98-8 Endosulfan I	0.059	Ų	0.000118	0.059
33213-65-9 Endosulfan II	0.118	U	0.000118	0.118
1031-07-8 Endosulfan sulfate	0.118	Ū	0.000118	0.118
72-20-8 Endrin	0.118	U	0.000118	0.118
7421-93-4 Endrin aldehyde	0.118	U	0.000118	0.118
53494-70-5 Endrin ketone	0.118	U	0.000118	0.118
76-44-8 Heptachlor	0.059	U	0.000118	0.059
1024-57-3 Heptachlor epoxide	0.059	U	0.000118	0.059
72-43-5 Methoxychlor	0.588	U	0.000118	0.588
8001-35-2 Toxaphene	5.88	U	0.000118	5.88
319-84-6 alpha-BHC	0.059	U	0.000118	0.059
5103-71-9 alpha-Chlordane	0.059	U	0.000118	0.059
319-85-7 beta-BHC	0.059	U	0.000118	0.059
319-86-8 delta-BHC	0.059	U	0.000118	0.059
58-89-9 gamma-BHC (Lindane)	0.059	υ	0.000118	0.059
5103-74-2 gamma-Chlordane	0.059	- ii - l	0.000118	0.059

Matrix: Water SAS No.: SDG No.: 205061509 Sample wt/vol: 1000 Units: mL Lab Sample ID: 20506150922	Lab Name: GCAL	Sample ID: SK	GW58-1014		
Lab Sample New 1000	Lab Code: LA024 Case No.:	Contract:			
Lab Sample New 1000	Matrix Water	SAS No.:		SDG No.:	205061509
Maislane: decamted: (YN) Date Received: 06/17/05	Sample we/vol: 1000 Units: ml.			_	
Concentrated Ediract Volume: ID	Level: (lowlmed) LOW	Date Collected:	06/16/05	Time:	1005
Concentrated Ediract Volume: ID		Date Received:	06/17/05		
Concentrated Edract Volume:					
Soil Aliquet Volume:					
Prop Method: OLMA 2 PEST/PCB Analytical Method: OLMA 2 PEST/PCB Analytical Method: OLMO 4.2 Prop Batch: 293938 Analytical Batch: 294768 Sulfur Cleanup: (YN) N Instrument ID: GCS12A CONCENTRATION UNITS: Upf. Lab File ID: 2050623/SV12A032 CAS MO. COMPOUND RESULT Q MDL RL RL RESULT Q MDL RESULT Q MDL RL RESULT Q MDL RL RESULT Q MDL RESULT Q MDL RL RESULT RESULT Q MDL RL RESULT RES	Concentrated Extract Volume: 1000 (µ	L.) Date Analyzed:	06/24/05	Time:	0827
Prop Betch: 299398	Soil Aliquot Volume: (µ	L) Dilution Factor:	1	Analys	t <u>TLS</u>
Prop Batch: 293936	Injection Volume:1 (µ	L) Prep Method: (OLM4.2 PEST	/PCB	
Prop Batch: 293936	GPC Cleanup: (Y/N) N pH:	Analytical Method	t: OLMO 4	2	
CONCENTRATION UNITS: Upf. CAS NO. COMPOUND RESULT Q MDL RESULT Q MDL RL 72-54-8 4,4-DDD 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000100 0.100 0.000100 0.100 0.000100 0.100 0.000100 0.000100 0.000100 1.000 12674-11-2 Arockor-1016 1.00 11141-18-5 Arockor-1221 2.00 0.000100 1.00 11141-18-6 Arockor-1222 1.00 0.000100 1.00 11067-89-1 Arockor-1248 1.00 0.000100 1.00 11088-82-5 Arockor-1280 1.00 1			YN) N	Instrument I	D: GCS12A
### CAS NO. COMPOUND RESULT Q MDL RL			2050623/	 SV12A032	
72-54-8 4,4-DDD 0.100 0.100 0.100 0.100 0.100 0.255-9 4,4-DDE 0.100 0.10	•	25044.7		4404	-
72-55-9 4,F-DDE					<u> </u>
S0-29-3 4,4-DDT					
309-00-2 Aldrin 0.050 U 0.000100 0.050					
12674-11-2	<u> </u>				
11104-28-2 Aroctor-1221 2.00 U 0.000100 2.00 11141-16-5 Aroctor-1232 1.00 U 0.000100 1.00 53469-21-9 Aroctor-1242 1.00 U 0.000100 1.00 12672-29-8 Aroctor-1248 1.00 U 0.000100 1.00 11097-69-1 Aroctor-1254 1.00 U 0.000100 1.00 11097-69-1 Aroctor-1254 1.00 U 0.000100 1.00 11098-82-5 Aroctor-1260 1.00 U 0.000100 1.00 80-57-1 Dialtrin 0.100 U 0.000100 0.100 80-57-1 Dialtrin 0.100 U 0.000100 0.100 80-57-1 Dialtrin 0.100 U 0.000100 0.100 33213-65-9 Endosulfan I 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 72-20-8 Endrin atlahyda 0.100 U 0.000100 0.100 7421-93-4 Endrin atlahyda 0.100 U 0.000100 0.100 7421-93-4 Endrin atlahyda 0.100 U 0.000100 0.100 75-44-8 Heptachlor 0.650 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.500 U 0.000100 0.500 1024-57-3 Heptachlor eposide 0.500 U	<u> </u>				
11141-16-5 Arockor-1232	<u> </u>				
53469-21-9 Arockor-1242 1.00 U 0.000100 1.00 12672-29-6 Arockor-1248 1.00 U 0.000100 1.00 11097-69-1 Arockor-1254 1.00 U 0.000100 1.00 11096-62-5 Arockor-1260 1.00 U 0.000100 1.00 1096-62-5 Arockor-1260 1.00 U 0.000100 0.100 1096-62-5 Arockor-1260 1.00 U 0.000100 0.100 1096-62-5 Endosulfan U 0.000100 0.100 0.050 33213-65-9 Endosulfan U 0.000100 0.050 33213-65-9 Endosulfan sulfate 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 72-20-8 Endrin sulfate 0.100 U 0.000100 0.100 72-40-8 Endrin sulfate 0.100 U 0.000100 0.100 7421-03-4 Endrin sulfate 0.100 U 0.000100 0.050 7421-03-4 Endrin sul					
12672-29-6			U	0.000100	1.00
11097-69-1 Aractor-1254	53489-21-9 Aroclar-1242	1.00	U	0.000100	1.00
1098-82-5 Arcolor-1280 1.00 U 0.000100 1.00		1,00	LI L	0.000100	1.00
B0-57-1 Disidrin	11097-69-1 Aroclor-1254	1.00	U	0.000100	1.00
Signature Sign	11096-82-5 Aroclor-1280	1.00	U	0.000100	1.00
33213-65-9 Endosulfan II	80-57-1 Dieldrin	0.100	Li l	0.000100	0.100
1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 72-20-8 Endrin Endrin 0.100 U 0.000100 0.100 7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin latione 0.100 U 0.000100 0.100 78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 1024-57-3 Methosychlor 0.500 U 0.000100 0.500 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosaphene 5.00 U 0.000100 5.00 319-84-8 alpha-Chlordane 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	959-98-8 Endoeulien I	0.050	U	0.000100	0.050
72-20-8 Endrin 0.100 U 0.000100 0.100 7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin latione 0.100 U 0.000100 0.100 78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosaphene 5.00 U 0.000100 5.00 319-84-8 alpha-SHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-88-8 delta-BHC (Lindane) 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	33213-65-9 Endosulfan li	0.100	U	0.000100	0.100
7421-83-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin latione 0.100 U 0.000100 0.100 76-44-8 Haptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosaphene 5.00 U 0.000100 5.00 319-84-8 alphe-BHC 0.050 U 0.000100 0.050 5103-71-9 alphe-Chlordane 0.050 U 0.000100 0.050 319-86-7 beta-BHC 0.050 U 0.000100 0.050 319-88-8 delta-BHC (Lindane) 0.050 U 0.000100 0.050	1031-07-8 Endosulfan sulfate	0,100	U	0.000100	0.100
53494-70-5 Endrin latione 0.100 U 0.000100 0.100 76-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methoxychlor 0.500 U 0.000100 0.500 8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-88-8 delta-BHC 0.350 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	72-20-8 Endrin	0.100	U	0.000100	0.100
78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor sposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindare) 0.050 U 0.000100 0.050	7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100
1024-57-3 Heptachlor eposide	53494-70-5 Endrin katone	0.100	U	0.000100	0.100
72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 alphe-BHC 0.050 U 0.000100 0.050 5103-71-9 alphe-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	76-44-8 Heptachior	0.050	Ų	0.000100	0.050
8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 alphe-BHC 0.050 U 0.000100 0.050 5103-71-9 alphe-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 germma-BHC (Lindare) 0.050 U 0.000100 0.050	1024-57-3 Heptachlor eposéde	0.050	U	0.000100	0.050
319-84-8 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-88-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	72-43-5 Methosychlor	0.500	U	0.000100	0.500
5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	8001-35-2 Toraphene	5.00	U	0.000100	5.00
319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	319-84-6 alpha-BHC	0.050	U	0.000100	0.050
319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050	5103-71-9 alphe-Chlordane	0.050	U	0.000100	0.050
58-89-9 germe-8HC (Lindane) C.050 U 0.000100 0.050	319-85-7 beta-8HC	0.050	IJ	0.000100	0.050
58-89-9 germe-8HC (Lindane) C.050 U 0.000100 0.050	319-86-8 delta-BHC			0.000100	0.050
	58-89-9 germe-BHC (Lindane)		Ü	0.000100	
			U		

Lab Name: GCAL	Sample ID: SKC	GW07R-10	14 RE		
Lab Code: LA024 Case No.:	Contract:				
Matrix: Water	SAS No.:		SDG No.:	205061509	_
Sample wt/vol: 1000 Units: mL	Lab Sample ID:	20506150	942		
Level: (low/med) LOW	Date Collected:	06/14/05	Time:	1555	
% Moisture: decanted: (Y/N)	Date Received:	06/15/05			
GC Column: ID: (mm)	Date Extracted:	06/24/05			
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/25/05	Time:	1633	
Soil Aliquot Volume: (µL)	Dilution Factor:	1	Analys	: SJT	
Injection Volume: 1 (µL)	Prep Method: _C	DLM4.2 PE	ST/PCB		
GPC Cleanup: (Y/N) N pH:	Analytical Method	: OLMO	4.2		_
Prep Batch: 295010 Analytical Batch: 295507	Sulfur Cleanup: (Y/N) <u>N</u>	Instrument I	D: GCS12A	
CONCENTRATION UNITS: ug/L	Lab File ID:	205062	5/SV12A004	**************************************	
CAS NO. COMPOUND	RESULT	Q	MDL	RL	
72-54-8 4,4'-DDD	0.100	U	0.000100	0.100] 43
72-55-9 4,4'-DDE	0.100	U	0.000100	0.100	7 i
50-29-3 4,4'-DDT	0.100	U	0.000100	0.100	\neg 1
309-00-2 Aldrin	0.050	U	0.000100	0.050	7
12674-11-2 Aroclor-1016	1.00	U	0.000100	1.00	\dashv \vdash
11104-28-2 Aroclor-1221	2.00	U	0.000100	2.00	-1
11141-16-5 Aroclor-1232	1.00	U	0.000100	1.00	-
53469-21-9 Aroclor-1242	1.00	U	0.000100	1.00	7 1
12672-29-6 Aroclor-1248	1.00	U	0.000100	1.00	7
11097-69-1 Aroclor-1254	1.00	U	0.000100	1.00	7
11096-82-5 Aroclor-1260	1,00	U	0.000100	1.00	7
60-57-1 Dieldrin	0.100	U	0.000100	0.100	7
959-98-8 Endosulfan I	0.050	U	0.000100	0.050	
33213-65-9 Endosulfan II	0.100	U	0.000100	0.100	7 1
1031-07-8 Endosulfan sulfate	0.100	U	0.000100	0.100	7
72-20-8 Endrin	0.100	U	0.000100	0.100	7
7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100	7
53494-70-5 Endrin ketone	0.100	U	0.000100	0.100	
76-44-8 Heptachlor	0.050	U	0.000100	0.050	7
1024-57-3 Heptachlor epoxide	0.050	U	0.000100	0.050	7
72-43-5 Methoxychlor	0.500	U	0.000100	0.500	7
8001-35-2 Toxaphene	5.00	U	0.000100	5.00	7
319-84-6 alpha-BHC	0.050	U	0.000100	0.050	7
5103-71-9 alpha-Chiordane	0.050	U	0.000100	0.050	7 [
319-85-7 beta-BHC	0.050	U	0.000100	0.050	7]
319-86-8 delta-BHC	0.050	Ü	0.000100	0.050	7
58-89-9 gamma-BHC (Lindane)	0.050	U	0.000100	0.050	7
5103-74-2 gamma-Chlordane	0.050	U	0.000100	0.050	7 1

9/12/05

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SKGW59-1014 RE
Lab Code: LA024 Case No.:	Contract
Matrix Water	SAS No: SDG No.: 205061509
Sample wt/Act: 1000 Units: ml.	Lab Samole ID: 20506150931
Level: (lowlmad) LOW	Date Collected: 06/15/05 Time: 1310
% Moisture: decented: (YN)	Date Received: 06/16/05
GC Column: ID: (n	nm) Date Extracted: 06/24/05
Concentrated Extract Volume: 1000 (1	ul.) Date Analyzed: 06/25/05 Time: 1651
Soil Aliquot Volume: (1	ul.) Dilution Factor: 1 Analyst: SJT
Injection Volume: 1 (1	
GPC Cleanup: (Y/N) N pH	
	
Prep Batch: 295010 Analytical Batch: 295507	Sulfur Cleanup: (Y/N) N Instrument ID: GCS12A
CONCENTRATION UNITS: upl	Lab File ID: 2050625/SV12A005
CAS NO. COMPOUND	RESULT Q MDL RL
72-54-8 4,4-000	0.100 U 0.000100 0.100 UJ
72-55-0 4,4-DOE	0.100 U 0.000100 0.100 \
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100
309-00-2 Aldrin	0.05C U 0.000100 0.050
12874-11-2 Araclar-1016	1.0C U 0.000100 1.00
11104-28-2 Araclar-1221	2 00 U 0.000100 2.00
11141-16-5 Aractor-1232	1.00 U 0.000100 1.00
53469-21-9 Aracior-1242	1.00 U 0.000100 1.00
12672-29-6 Araciar-12-62	
11097-69-1 Araclar-1254	
11098-82-5 Araclor-1280	
80-57-1 Dieldrin	0.400 U 0.000100 0.100
969-98-8 Endosulfan I	0.05C U 0.000100 0.050
33213-65-0 Endosulfan II	0.100 U 0.000100 0.100
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100
72-20-8 Endrin	0.100 U 0.000100 0.100
7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100
53494-70-5 Endrin lestone	0.10C U 0.000100 0.100
76-44-8 Heptachior	0.050 U 0.000100 0.050
1024-57-3 Heptachlor eposéde	0.05C U 0.000100 0.050
72-43-5 Methagchlar	0.500 U 0.000100 0.500
8001-35-2 Toraphene	5.00 U 0.000100 5.00
319-84-6 alphe-BHC	0.050 U 0.000100 0.050
5103-71-9 alphe-Chlordane	0.050 U 0.000100 0.050
319-85-7 beta-BHC	0.05C U 0.000100 0.050
319-85-8 delta-BHC	0.050 U 0.000100 0.050
58-89-9 gemme-BHC (Lindene)	0.050 U 0.000100 0.050
5103-74-2 gamme-Chlordane	0.050 L ¹ 0.000100 0.050

alulas

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SK	GW61-101	4 RE		
Lab Code: LA024 Case No.:	Contract:				
Matrix: Water	SAS No.:		SDG No.:	205061509	
Sample wt/vol: 1000 Units: mL	Lab Sample ID:	20506150	933		
Level: (low/med) LOW	Date Collected:	06/15/05	Time:	1445	
% Moisture: decanted: (Y/N)	Date Received:	06/16/05			
GC Column: ID: (mm)	Date Extracted:	06/24/05			
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/25/05	Time:	1726	_
Soil Aliquot Volume: (µL)	Dilution Factor:	1		t: SJT	
Injection Volume: 1 (µL)		OLM4.2 PE			
GPC Cleanup: (Y/N) N pH:	Analytical Method		·····	· · · · · · · · · · · · · · · · · · ·	
Prep Batch: 295010 Analytical Batch: 295507	-			D: GCS12A	
Prep balcii. 290010 Alaiyilda balcii. 290007	- '	·		D. GCS12A	
CONCENTRATION UNITS: ug/L	Lab File ID:	205062	5/SV12A007		
CAS NO. COMPOUND	RESULT	Q	MDL	RL	
72-54-8 4,4'-DDD	0.100	U	0.000100	0.100] UJ
72-55-9 4,4'-DDE	0.100	U	0.000100	0.100	_
50-29-3 4,4'-DDT	0.100	U	0.000100	0.100	_ I
309-00-2 Aldrin	0.050	U	0.000100	0.050	_
12674-11-2 Aroclor-1016	1.00	U	0.000100	1.00	_
11104-28-2 Aroclor-1221	2.00	U	0.000100	2.00	_
11141-16-5 Aroclor-1232	1.00	U	0.000100	1.00	_
53469-21-9 Aroclor-1242	1.00	U	0.000100	1.00	-
12672-29-6 Aroclor-1248	1.00	Ü	0.000100	1.00	-
11097-69-1 Aroclor-1254	1.00	U	0.000100	1.00	- \
11096-82-5 Aroclor-1260	1.00	U	0.000100	1.00	_
60-57-1 Dieldrin	0.100	U	0.000100	0.100	_
959-98-8 Endosulfan I	0.050	U	0.000100	0.050	_
33213-65-9 Endosulfan II	0.100	U	0.000100	0.100	_
1031-07-8 Endosulfan sulfate	0.100	U	0.000100	0.100	_
72-20-8 Endrin	0.100	U	0.000100	0.100	_
7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100	_
53494-70-5 Endrin ketone	0.100	U	0.000100	0.100	_
76-44-8 Heptachlor	0.050	U	0.000100	0.050	-
1024-57-3 Heptachlor epoxide	0.050	U	0.000100	0.050	⊣ 1
72-43-5 Methoxychlor	0.500	U	0.000100	0.500	⊣ 1
8001-35-2 Toxaphene	5.00	U	0.000100	5.00	⊣ 1
319-84-6 alpha-BHC	0.050	U	0.000100	0.050	
5103-71-9 alpha-Chlordane	0.050	U	0.000100	0.050	_
319-85-7 beta-BHC	0.050	Ü	0.000100	0.050	→
319-86-8 delta-BHC	0.050	U	0.000100	0.050	」 \
58-89-9 gamma-BHC (Lindane)	0.050	U	0.000100	0.050	\
5103-74-2 gamma-Chlordane	0.050	U	0.000100	0.050	_] ∤

عاملين منهم

1D ORGANICS ANALYSIS DATA SHEET

Lab Name:	GCAL	Sample ID: SI	KGW64-101	4RE		_
Lath Code:	LA024 Case No.:	Contract:				_
Matric Wa				SDG No.:	205061509	_
Sample wt/vo	t: 1000 Units: mL	Lab Sample ID:	20506150	934	-	
Level: (low/m	ed) LOW	Date Collected:	06/15/05	Time:	0945	_
	decented: (Y/N)	Date Received:	06/16/05			
	1D:(mm)	Date Extracted:	06/24/05			
	Extract Volume: 1000 (µL)		06/25/05	Timer	1744	_
						_
	folumex (µL.)				L <u>301</u>	-
Injection Val u	imec 1 (pl.)	Prep Method:	OLM4.2 PE	ST/PCB		_
GPC Clasnu	p: (Y/N) N pH:	Analytical Metho	d: OLMO	4.2		_
Prep Betch:	295010 Analytical Batch: 295507	Sulfur Cleanup:	(Y/N) <u>N</u>	Instrument I	D: GCS12A	_
YAMAENTRA	ATION UNITS: Up.L.	Lab File ID:	205062	5/SV12A008		
	•					
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
72-54-8	4,4-000	0.100	U	0.000100	0.100	_ uմ
72-55 -0	4.4-00E	0.100	U	0.000100	0.100]
50-29-3	4.4-00T	0.100	Ų	0.000100	0.100	_
309-00-2	Aldrin	0.050	U	0.000100	0.050	
12674-11-2	Aroclar-1016	1.00	U	0.000100	1.00]]
11104-28-2	Aractor-1221	2.00	U	0.000100	2.00	\Box
11141-16-5	Aroclor-1232	1.00	U	0.000100	1.00	\supset 1
53469-21-9	Araclar-1242	1.00	U	0.000100	1.00	\Box
12672-29-6	Araclar-1248	1.00	Ų	0.000100	1.00	7
11097-69-1	Aroclar-1254	1.00°	U	0.000100	1.00	7
11096-82-5	Aroclor-1280	1.00	U	0.000100	1.00	
80-57-1	Dieldrin	0.100	U	0.000100	0.100	
959-98-8	Endosulfan I	0.050	U	0.000100	0.050	7 1
33213-65-0	Endosulfan II	0.100	U	0.000100	0.100	7
1031-07-8	Endosulfan sulfate	0.100	U	0.000100	0.100	-
72-20-8	Endrin	0.100	U	0.000100	0.100	- 1
7421-03-4	Endrin aldehyde	0.100	υ	0.000100	0.100	- }
53494-70-5	Endrin listane	0.100	U	0.000100	0.100	-
76-44-8	Heptachlor	0.050	Ü	0.000100	0.050	-
1024-57-3	Heptachior eposide	0.050	Ū	0.000100	0.050	— I
72-43-5	Methanichiar	0.500	- u	0.000100	0.500	-
8001-35-2	Taxphene	5.00	- 0	0.000100	5.00	- [
319-84-6	alpha-BHC	0.050	U	0.000100	0.050	
5103-71-0	siphe-Chlordane	0.050	- U	0.000100	0.050	
319-85-7	bete-BHC	0.050	 5		0.050	I
	della-BHC		U	0.000100		
319-86-8	gamme-BHC (Lindane)	0.050	<u> </u>	0.000100	0.050	
58-89-9 5103-74-2	gamme-Chlordane				0.050	- -
5103-74-2		0.050	U	0.000100	0.050	-

slider

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: Sk	(GW63-101	4 RE		
Lab Code: LA024 Case No.:	Contract:				
Matric Water	SAS No.:		SDG No.:	205061509	_
Sample wt/vol: 1000 Units: mL	Lab Sample ID:	20506150	935		
Level: (low/med) LOW	Date Collected:	06/15/05	Time:	1035	_
% Moisture: decanted: (Y/N)	Date Received:	06/16/05			_
GC Column: ID: (mm)	Date Extracted:	06/24/05			
Concentrated Extract Volume: 1000 (µL)	Date Analyzed:	06/25/05	Time:	1802	-
Soil Aliquot Volume: (µL)	Dilution Factor:			: SJT	-
					-
Injection Volume: 1 (µL)	Prep Method:				-
GPC Cleanup: (Y/N) N pH:	Analytical Metho	d: OLMO	0 4.2		_
Prep Batch: 295010 Analytical Batch: 295507	Sulfur Cleanup:	(Y/N) <u>N</u>	Instrument II	D: GCS12A	-
CONCENTRATION UNITS: ug/L	Lab File ID:	205062	5/SV12A009		
CAS NO. COMPOUND	RESULT	Q	MDL	RL	
72-54-8 4,4'-DDD	0.100	U	0.000100	0.100	IUI
72-55-9 4,4'-DDE	0.100	U	0.000100	0.100	٦,
50-29-3 4,4'-DDT	0.100	U	0.000100	0.100	7 1
309-00-2 Aldrin	0.050	U	0.000100	0.050	7
12674-11-2 Aroclor-1016	1.00	U	0.000100	1.00	7 1
11104-28-2 Aroclor-1221	2.00	U	0.000100	2.00	7]
11141-16-5 Aroclor-1232	1.00	U	0.000100	1.00	7 1
53469-21-9 Aroclor-1242	1.00	U	0.000100	1.00	7 }
12672-29-8 Aroclor-1248	1.00	U	0.000100	1.00	7 /
11097-69-1 Aroclor-1254	1.00	υ	0.000100	1.00	7 (
11096-82-5 Aroclor-1260	1.00	U	0.000100	1.00	7
60-57-1 Dieldrin	0.100	U	0.000100	0.100	7 (
959-98-8 Endosulfan I	0.050	U	0.000100	0.050	7
33213-65-9 Endosulfan II	0.100	Ū	0.000100	0.100	7 1
1031-07-8 Endosulfan sulfate	0.100	IJ	0.000100	0.100	7 1
72-20-8 Endrin	0.100	U	0.000100	0.100	7]
7421-93-4 Endrin aldehyde	0.100	U	0.000100	0.100	7
53494-70-5 Endrin ketone	0.100	U	0.000100	0.100	7 I
76-44-8 Heptachlor	0.050	U	0.000100	0.050	7 /
1024-57-3 Heptachlor epoxide	0.050	υ	0.000100	0.050	7 1
72-43-5 Methoxychlor	0.500	U	0.000100	0.500	7
8001-35-2 Toxaphene	5.00	U	0.000100	5.00	7 1
319-84-6 alpha-BHC	0.050	U	0.000100	0.050	7
5103-71-9 alpha-Chlordane	0.050	C	0.000100	0.050	7
319-85-7 beta-BHC	0.050	U	0.000100	0.050	7 1
319-86-8 delta-BHC	0.050	-	0.000100	0.050	7 }
58-89-9 gamma-BHC (Lindane)	0.050	U	0.000100	0.050	7
5103-74-2 gamma-Chlordane	0.050	J	0.000100	0.050	∃ 4

alistai

1D ORGANICS ANALYSIS DATA SHEET

Maintr. Water SAS No: SDG No.: 2050815009	Lab Name: GCAL	Sample ID: SKGW62A-1014 RE
SAS No: SDG No: 205081509		
Case Column Col		
Levelt (lowlmed) LOW		
Microburn: December: Dec	Sample withot: 1000 Units: ml.	Lab Sample ID: 20506150936
GC Column:	Level: (low/med) LOW	Date Collected: 06/15/05 Time: 1130
GC Column:	% Maisture: decented: (Y/N)	Date Received: 06/16/05
Concentrated Editact Volume: 1000 (µL) Date Analyzed: 08/2505 Time: 1820		•
Sol Aliquet Volume:		
Prop Nethod: OLIMA 2 PESTAPCIS Analytical Method: OLIMA 2 Prop Batich: 298010 Analytical Batch: 298507 Sufur Ceanup: (YN) N Instrument ID: GCS12A CONCENTRATION UNITS: upl. Lab File ID: 2050825/SV12A010 CAS NO. COMPOUND RESULT Q MIDL RL RL RESULT RE	Concentrated Extract Volume: 1000 ()	uL.) Date Analyzed: 06/25/05 Time: 1820
Analytical Method: CLMO 42 COMMENTRATION UNITS: Upt. Lab File ID: 2050825/SV12A010 Lab File ID:	Soil Aliquot Valume: ()	uL.) Dilution Factor: 1 Analyst: SJT
Analytical Method: CLMO 42 COMMENTRATION UNITS: Upt. Lab File ID: 2050825/SV12A010 Lab File ID:	Injection Volume:1 (µ	ul.) Prep Method: OLM4.2 PEST/PCB
Prep Batch: 285010 Analytical Batch: 28507 Suffur Cleanup: (YN) N Instrument ID: GCS12A CONCENTRATION UNITS: Upt. Lab File ID: 2050825/SV12A010 CAS NO. COMPOUND RESULT Q MDL RL 72-54-8 4,4-DDD 0.100 U 0.000100 0.100 50-29-3 4,4-DDE 0.100 U 0.000100 0.100 50-29-3 4,4-DDT 0.100 U 0.000100 0.100 12874-11-2 Anoton-1016 1.00 U 0.000100 1.00 12874-11-2 Anoton-1016 1.00 U 0.000100 1.00 11104-18-5 Anoton-1232 1.00 U 0.000100 1.00 11106-82-5 Anoton-1242 1.00 U 0.000100 1.00 12872-29-5 Anoton-1242 1.00 U 0.000100 1.00 11097-89-1 Anoton-1254 1.00 U 0.000100 1.00 11098-82-5 Anoton-1254 1.00 U 0.000100 1.00 80-57-1 Distotin 0.100 1.00 80-57-1 Distotin 0.100 U 0.000100 0.100 80-58-8 Endosullian 1 0.050 U 0.000100 0.100 1031-07-8 Endosullian suffate 0.100 U 0.000100 0.100 1031-07-8 Endosullian suffate 0.100 U 0.000100 0.100 72-20-8 Endrin latone 0.100 U 0.000100 0.100 73-44-8 Heptachfor 0.050 U 0.000100 0.050 1024-57-3 Heptachfor 0.050 U 0.000100 0.050 1031-88-8 delta-8HC 0.050 U 0.000100 0.055 103-87-1 Distot-Chloridane 0.050 U 0.000100 0.050 1031-88-8 delta-8HC 0.050 U 0.000100 0.055 103-87-1 Distot-Chloridane 0.050 U 0.000100 0.050 1031-88-8 delta-8HC 0.050 U 0.000100 0.055 103-87-1 Distot-Chloridane 0.050 U 0.000100 0.055 103-88-89-9 gamma-8HC (Lindane) 0.050 U 0.000100 0.055		•
CAS NO. COMPOUND RESULT Q MIDL RL 72-54-8 4,4-DDD 0.100 U 0.000100 0.100 U.52-55-54-8 4,4-DDE 0.100 U 0.000100 0.050 U 0.000100 0.000 U 0.000100 0.000	<u> </u>	
CAS NO. COMPOUND RESULT Q MDL RL 72-54-8 4,4-DDD 0.100 U 0.000100 0.100 72-55-9 4,4-DDE 0.100 U 0.000100 0.100 0.000 0.000 U 0.000100 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 U 0.000100 1.00 11104-28-2 Arckor-1221 2.00 U 0.000100 1.00 11141-18-5 Arckor-1232 1.00 U 0.000100 1.00 12572-29-8 Arckor-1232 1.00 U 0.000100 1.00 12572-29-8 Arckor-1248 1.00 U 0.000100 1.00 12572-29-8 Arckor-1248 1.00 U 0.000100 1.00 11096-82-5 Arckor-1280 1.00 U 0.000100 1.00 11096-82-5 Arckor-1280 1.00 U 0.000100 1.00 1000-57-1 Diskhin 0.153 U 0.000100 0.100 000-569-8 Endosulfan II 0.100 U 0.000100 0.100 000-57-1 Diskhin 0.100 U 0.000100 0.100 000-57-1 Diskhin 0.100 U 0.000100 0.100 000-57-1 Diskhin 0.100 U 0.000100 0.100 000-50-1 Diskhin 0.100 U 0.000100 0.000 000-50-1 Diskhin 0.000 U 0.000100 0.000 000-50-1 Diskhin 000-50-1 Disk	Prep Beach: 26010 Analysical Balant: 26007	Surur Cleanup: (17N) N RESTUTION NO. GCS12A
72-54-8 4,4-DDD	CONCENTRATION UNITS: upl.	Lab File ID: 2050625/SV12A010
72-55-9 4,4*-DDE	CAS NO. COMPOUND	RESULT Q MDL RL
50-29-3 4,F-DDT	72-54-8 (4,4-000)	0.100 U 0.000100 0.100 U.S
309-00-2 Aldrin		
12674-11-2 Aroctor-1016 1.00 U 0.000100 1.00 11104-28-2 Aroctor-1221 2.00 U 0.000100 2.00 11141-18-5 Aroctor-1232 1.00 U 0.000100 1.00 53469-21-9 Aroctor-1242 1.00 U 0.000100 1.00 12872-29-8 Aroctor-1248 1.00 U 0.000100 1.00 11097-80-1 Aroctor-1254 1.00 U 0.000100 1.00 11098-82-5 Aroctor-1280 1.00 U 0.000100 1.00 11098-82-5 Aroctor-1280 1.00 U 0.000100 1.00 10098-82-6 Aroctor-1280 1.00 U 0.000100 0.100 10098-82-6 Endosulian I 0.050 U 0.000100 0.100 1031-07-8 Endosulian II 0.100 U 0.000100 0.100 1031-07-8 Endosulian sulliste 0.100 U 0.000100 0.100 1031-07-8 Endosulian sulliste 0.100 U 0.000100 0.100 1031-07-8 Endini aldehyde 0.100 U 0.000100 0.100 1034-67-3 Heptachlor eposide 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 1031-88-6 Heliosychlor 0.050 U 0.000100 0.050 1031-88-7 beta-8HC 0.050 U 0.000100 0.050 1031-88-8 delta-8HC 0.050 U 0.000100 0.050	50-29-3 4,4'-DDT	0.400 U 0.000100 0.100
11104-28-2 Arockor-1221 2.00 U	308-00-2 Aldrin	0.050 U 0.000100 0.050
1141-18-5 Aroctor-1232 1.00 U 0.000100 1.00 53469-21-9 Aroctor-1242 1.00 U 0.000100 1.00 12672-29-8 Aroctor-1246 1.00 U 0.000100 1.00 11097-69-1 Aroctor-1254 1.00 U 0.000100 1.00 11098-82-5 Aroctor-1260 1.00 U 0.000100 1.00 50-57-1 Distrin 0.100 U 0.000100 0.100 559-98-8 Endosulfan 0.100 U 0.000100 0.100 53213-85-9 Endosulfan 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 72-20-8 Endrin eldehyde 0.100 U 0.000100 0.100 7421-93-4 Endrin eldehyde 0.100 U 0.000100 0.050 7421-93-5 Methasychter 0.500 U 0.000100 0.050 7421-93-6 Methasychter 0.500 U 0.000100 0.050 7421-93-6 Sobre-BHC 0.050 U 0.000100 0.050	12674-11-2 Araclar-1016	1.00 U 0.000100 1.00
S3469-21-9 Arockor-1242 1.00 U 0.000100 1.00 12672-29-8 Arockor-1254 1.00 U 0.000100 1.00 11097-69-1 Arockor-1254 1.00 U 0.000100 1.00 11096-82-5 Arockor-1280 1.00 U 0.000100 1.00 11096-82-5 Arockor-1280 1.00 U 0.000100 0.100 10096-82-5 Arockor-1280 1.00 U 0.000100 0.100 10096-82-6 Endosulfan II 0.100 U 0.000100 0.050 1321-3-65-9 Endosulfan II 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 1031-07-8 Endrin aldehyde 0.100 U 0.000100 0.100 1031-07-8 Endrin aldehyde 0.100 U 0.000100 0.100 1031-07-8 Endrin listone 0.100 U 0.000100 0.050 1031-07-8 Endrin listone 0.050 U 0.000100 0.050 103	11104-28-2 Aractor-1221	2.00 U 0.000100 2.00
12672-29-6 Arockor-1248	11141-16-5 Aractor-1232	1.00 U 0.000100 1.00
12672-29-6 Arockor-1248	53469-21-9 Avoctor-1242	1.00 U 0.000100 1.00
11096-82-5 Arockor-1280 1.00 U 0.000100 0.100		1.00 U 0.000100 1.00
80-57-1 Dieldrin 0.100 U 0.000100 0.100 959-98-8 Endoeulien I 0.050 U 0.000100 0.050 0.050 0.050 0.000100 U 0.000100 0.100 0.100 0.100 0.100 U 0.000100 0.100 0.100 0.100 0.100 U 0.000100 0.100 0.100 0.100 0.100 0.100 0.100 U 0.000100 0.050 0.100 0.050 U 0.000100 0.050 0.050 U 0.000100 0.050 0.050 U 0.000100 0.050 0.100 0.050 U 0.000100 0.050 0.100 0.050 U 0.000100 0.050 0.100 0.050 0.050 U 0.000100 0.050 0.050 0.050 U 0.000100 0.050 0.050 0.050 U 0.000100 0.050 0.050 0.0550 U 0.000100 0.050 0.050 0.0550 U 0.000100 0.050 0.050 0.050 0.0550 U 0.000100 0.050 0.050 0.0550 U 0.000100 0.050 0.050 0.0550 U 0.000100 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 0.0550 U 0.000100 0.0550 0.0550 0.0550 0.0550 U 0.000100 0.0550 0	11097-89-1 Aroctor-1254	1.00 U 0.000100 1.00
959-98-8	11096-82-5 Araclar-1280	1.00 U 0.000100 1.00
33213-65-9 Endosulfan II	80-57-1 Dieldrin	0.100 U 0.000100 0.100
1031-07-8 Endosulfan sulfate 0.100 U 0.000100 0.100 72-20-8 Endrin 0.100 U 0.000100 0.100 7421-03-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin latone 0.100 U 0.000100 0.100 78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor spoulde 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosaphane 5.00 U 0.000100 5.00 319-84-6 alpha-Chlordane 0.050 U 0.000100 0.050 5103-71-9 slpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-8HC 0.050 U 0.000100 0.050 319-86-8 delta-8HC 0.050 U 0.000100 0.050 58-88-9 gamma-8HC (Lindane) 0.050 U 0.000100 0.050	959-98-8 Endoeulien I	0.050 U 0.000100 0.050
72-20-8 Endrin 0.100 U 0.000100 0.100 7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin lations 0.100 U 0.000100 0.100 76-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tosephene 5.00 U 0.000100 5.00 319-84-6 alpha-Chlordane 5.00 U 0.000100 0.050 5103-71-9 alpha-Chlordane 9.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC (Lindane) 0.050 U 0.000100 0.050 58-89-9 germma-BHC (Lindane) 0.050 U 0.000100 0.050	33213-65-0 Endoculian II	0.100 U 0.000100 0.100
7421-93-4 Endrin aldehyde 0.100 U 0.000100 0.100 53494-70-5 Endrin lestone 0.100 U 0.000100 0.100 78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychlor 0.500 U 0.000100 0.500 8001-35-2 Tossphene 5.00 U 0.000100 5.00 319-84-8 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordene 9.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 genma-BHC (Lindane) 0.050 U 0.000100 0.050	1031-07-8 Endosulian sulfate	0.100 U 0.000100 0.100
53494-70-5 Endrin listone 0.100 U 0.000100 0.100 78-44-8 Heptachior 0.050 U 0.000100 0.050 1024-57-3 Heptachior eposide 0.050 U 0.000100 0.050 72-43-5 Methosychior 0.500 U 0.000100 0.500 8001-35-2 Toraphene 5.00 U 0.000100 5.00 319-84-8 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordene 9.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 deta-BHC 0.050 U 0.000100 0.050 58-89-9 genma-BHC (Lindane) 0.050 U 0.000100 0.050	72-20-8 Endrin	0.100 U 0.000100 0.100
78-44-8 Heptachlor 0.050 U 0.000100 0.050 1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychter 0.500 U 0.000100 0.500 8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 slphe-BHC 0.050 U 0.000100 0.050 5103-71-9 slphe-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 deta-BHC 0.050 U 0.000100 0.050 58-89-9 genma-BHC (Lindane) 0.050 U 0.000100 0.050	7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100
1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychtor 0.500 U 0.000100 0.500 8001-35-2 Toxephene 5.00 U 0.000100 5.00 319-84-6 slphe-BHC 0.050 U 0.000100 0.050 5103-71-9 slphe-Chlordane 0.050 U 0.000100 0.050 319-85-7 bets-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 genmms-BHC (Lindane) 0.050 U 0.000100 0.050	53494-70-5 Endrin latone	0.100 U 0.000100 0.100
1024-57-3 Heptachlor eposide 0.050 U 0.000100 0.050 72-43-5 Methosychtor 0.500 U 0.000100 0.500 8001-35-2 Toxephene 5.00 U 0.000100 5.00 319-84-6 slphe-BHC 0.050 U 0.000100 0.050 5103-71-9 slphe-Chlordane 0.050 U 0.000100 0.050 319-85-7 bets-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 genmms-BHC (Lindane) 0.050 U 0.000100 0.050	76-44-8 Heptachior	0.050 U 0.000100 0.050
72-43-5 Methosychtor 0.500 U 0.000100 0.500 8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 slphe-BHC 0.050 U 0.000100 0.050 5103-71-9 slphe-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 germma-BHC (Lindane) 0.050 U 0.000100 0.050		
8001-35-2 Toxaphene 5.00 U 0.000100 5.00 319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 deta-BHC 0.050 U 0.000100 0.050 58-88-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050		
319-84-6 alpha-BHC 0.050 U 0.000100 0.050 5103-71-9 alpha-Chlordane 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 deta-BHC 0.050 U 0.000100 0.050 58-89-9 gamma-BHC (Lindane) 0.050 U 0.000100 0.050		
5103-71-9 alpha-Chlordene 0.050 U 0.000100 0.050 319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gemma-BHC (Lindane) 0.050 U 0.000100 0.050	<u> </u>	
319-85-7 beta-BHC 0.050 U 0.000100 0.050 319-86-8 deta-BHC 0.050 U 0.000100 0.050 58-89-9 gemma-BHC (Lindane) 0.050 U 0.000100 0.050		
319-88-8 delta-BHC 0.050 U 0.000100 0.050 58-89-9 gemme-BHC (Lindane) 0.050 U 0.000100 0.050	<u> </u>	
58-89-9 gamme-8HC (Lindane) 0.050 t/ 0.000100 0.050		
		0.00000

آمادا) سهم

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SKGW58-1014 RE	
Lab Code: LA024 Case No.:	Contract:	
Matrix: Water	SAS No.: SDG No.: 205061509	
Sample wt/vol: 1000 Units: mL	Lab Sample iD: 20506150939	
Level: (low/med) LOW	Date Collected: 06/16/05 Time: 1005	
% Moisture: decanted: (Y/N)	Date Received: 06/17/05	
GC Column: ID: (mm)	Date Extracted: 06/24/05	
Concentrated Extract Volume: 1000 (µL)	Date Analyzed: 06/25/05 Time: 1856	
Soil Aliquot Volume: (μL)	Dilution Factor: 1 Analyst: SJT	
Injection Volume: 1 (μL)	Prep Method: OLM4.2 PEST/PCB	
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2	
Prep Batch: 295010 Analytical Batch: 295507	Sulfur Cleanup: (Y/N) N Instrument ID: GCS12A	
CONCENTRATION UNITS: ua/L	Lab File ID: 2050625/SV12A012	
	RESULT Q MDL RL	_
CAS NO. COMPOUND 72-54-8 14.4'-DDD	-	uJ
72-54-8 4,4'-DDD 72-55-9 4,4'-DDE	0.100 U 0.000100 0.100 0.100 U 0.000100 0.100	Y)
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100	J
309-00-2 Aldrin	0.050 U 0.000100 0.050	1
12674-11-2 Aroclor-1016	1.00 U 0.000100 1.00	1
11104-28-2 Aroclor-1221	2.00 U 0.000100 2.00	1
11141-16-5 Aroclor-1232	1.00 U 0.000100 1.00	1
53469-21-9 Aroclor-1242	1.00 U 0.000100 1.00	1
12672-29-6 Aroclor-1248	1.00 U 0.000100 1.00	
11097-69-1 Aroclor-1254	1.00 U 0.000100 1.00	1
11096-82-5 Aroclor-1260	1.00 U 0.000100 1.00	1
60-57-1 Dieldrin	0.100 U 0.000100 0.100	1
959-98-8 Endosulfan I	0.050 U 0.000100 0.050	(
33213-65-9 Endosulfan II	0.100 U 0.000100 0.100	
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100	
72-20-8 Endrin	0.100 U 0.000100 0.100	i
7421-93-4 Endrin aldehyde	0.100 U 0.000100 0.100	١
53494-70-5 Endrin ketone	0,100 U 0.000100 0.100	
76-44-8 Heptachlor	0.050 U 0.000100 0.050	1
1024-57-3 Heptachlor epoxide	0.050 U 0.000100 0.050	
72-43-5 Methoxychlor	0.500 U 0.000100 0.500	1
8001-35-2 Toxaphene	5.00 U 0.000100 5.00	1
319-84-6 alpha-BHC	0.050 U 0.000100 0.050	1
5103-71-9 alpha-Chlordane	0.050 U 0.000100 0.050	l
319-85-7 beta-BHC	0.050 U 0.000100 0.050	1
319-86-8 delta-BHC	0.050 U 0.000100 0.050	1
58-89-9 gamma-BHC (Lindane)	0.050 U 0.000100 0.050	1
5103-74-2 gamma-Chlordane	0.050 U 0.000100 0.050	1
GIOGITE Gamina-Oniordano	0.000 0 0.000	4

glidos msr

U.S. EPA-CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

b Name:	GCAL		Contract:				
b Code: OW No.:	LA024	Case No.:	SAS No.:		<u></u>	SDG No.:	205061509
		EPA Sample No SKGW06R-1014		Lab Sampi 20506150901			
		SKGW07R-1014		20506150902		_	
		SKGW06R-1014 (DISS)		20506150904			
		SKGW07R-1014 (DISS)		20506150905	5		
		SKGW59-1014		20506150907	7		
		SKGW59-1014 DUPE		20506150906	3	_	
		SKGW61-1014		20506150909	<u> </u>		
		SKGW64-1014		20506150910	<u> </u>	_	
		SKGW63-1014		20506150911	<u> </u>	_	
		SKGW62A-1014		20506150912	2	_	
		SKGW59-1014 (DISS)		20506150914		_	
		SKGW59-1014 (DISS) DUP		20506150919			
		SKGW61-1014 (DISS)		20506150916			
		SKGW64-1014 (DISS)		20506150917			
		SKGW63-1014 (DISS) Were ICP interelement corrections as	wiind 2		YES		
		Were ICP background corrections ap	•		YES	_	
		If yes were raw data generated application of background correct	before		NO.	_	
Commen	ts:					-	
					. <u></u>		
	hat this data pa	ackage is in compliance with the terms than the conditions detailed above. Re	lease of this	s data containe	d in this i	hardcopy o	lata package and in
complete the comp	eness for other puter readable (data submitted on the diskette has bee	n authorize	d by the Labora	Itory Mar	lager or th	e Managers
complete the comp	eness for other puter readable o e, as verified by			lame: MA	-		-

COVER PAGE - IN

ILMO4.1

U.S. EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

		·····	Contract:				
b Code:	LA024	Case No.:	SAS No.:		SDG No	.: 20506150)9
OW No.:							
		EPA Sample No		Lab Sampl	e ID		
		SKGW62A-1014 (DISS)		20506150919	<u> </u>		
		SKGW60-1014		20506150921	·		
		SKGW58-1014		20506150922			
		SKGW58-1014 MS		20506150923	<u> </u>		
		SKGW58-1014 DUP		20506150925			
		SKGW60-1014 (DISS)		20506150927	•		
		SKGW58-1014 (DISS)		20506150928	<u> </u>		
		SKGW58-1014 MS(DISS)		20506150929			
		SKGW58-1014 DUP(DISS)		20506150930	<u> </u>		
		Were ICP interelement corrections and	blied 7	Yes / No	YES		
		Were ICP interelement corrections app		Yes / No	YES YES		
		Were ICP background corrections app	lied ? efore	Yes / No	YES		
		Were ICP background corrections app	lied ? efore	Yes / No			
Comment	ts:	Were ICP background corrections app	lied ? efore	Yes / No	YES		
Comment	ts:	Were ICP background corrections app	lied ? efore	Yes / No	YES		
Comment	ts:	Were ICP background corrections app	lied ? efore	Yes / No	YES		
Comment	ts:	Were ICP background corrections app	lied ? efore	Yes / No	YES		
Comment	ts:	Were ICP background corrections app	lied ? efore	Yes / No	YES		
I certify the complete the comp	that this data peness for othe	Were ICP background corrections app	lied ? pefore ons ? and conditions as of this	Yes / No Yes / No ons of the contra data contained	NO act, both technic	y data packag	e and in
I certify the complete the complete designee	that this data peness for othe puter readable, as verified b	Were ICP background corrections app If yes-were raw data generated be application of background corrections application of background corrections application of background corrections application of background corrections applications detailed above. Release data submitted on the diskette has been	nd conditions authorized	Yes / No Yes / No ons of the contra data contained by the Laborat	NO act, both technic	y data packag the Manager's	e and in

COVER PAGE - IN

ILMO4.1

EPA SAMPLE NO.

SKGW06R-1014

		50901	M P T
Lab Same Date Record : ug/L Concentration 7510 11.5 5.2 397	ple ID: 2050619 perived: 06/15/0	50901 5Q	M 7
Date Record : ug/L Concentration 7510 11.5 5.2 397	C B	5 Q	PJ
Date Record : ug/L Concentration 7510 11.5 5.2 397	C B	5 Q	PJ
Concentration 7510 11.5 5.2 397	С	Q	PJ
7510 11.5 5.2 397	В		PJ
7510 11.5 5.2 397	В		PJ
7510 11.5 5.2 397	В		PJ
11.5 5.2 397		E	
5.2 397			P
397	В		<u> </u>
L			Р
0.2			Р
	В		Р
0.1	U		Р
263000		<u> </u>	PJ
9.7	В		Р
12.5	В		P
	В		PJ
		E	
			P
			PJ
		E	PJ
			AV
			P
			P
		N	PR
	U		P
	••		PJ
			PW
	В	<u> </u>	PJ
			AS
		12.5 B 17.3 B 21900 14.8 63000 1460 0.1 U 0.4 U 4080 B 3.5 U 1.1 U 23700 4.1 U 29.9 B	12.5 B 17.3 B E 21900 E 14.8 63000 E 1460 E 0.1 U 0.4 U 4080 B 3.5 U N 1.1 U 23700 E 4.1 U N 29.9 B E

1

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	-----------------	------	-------

SKGW07R-1014

	AL	Col	ntract:	<u> </u>	··· ···
Lab Code: LA0	24 Case No.: _	SA:	S No.:	SDG 1	No.: 205061509
	iter) Water		Sample ID: 205061	50902	
Level: (low / med	d)		Received: 06/15/0		
% Solids:		Date	Received. 00/13/0	5	
Concentration U	Inits (ug/L or mg/kg dry weigl	nt): ug/L			
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	23300		E	PJ
7440-36-0	Antimony	18.6	В		Р
7440-38-2	Arsenic	7.6	В		Р
7440-39-3	Barium	1120			Р
7440-41-7	Beryllium	1.1	В		Р
7440-43-9	Cadmium	0.1	U		Р
7440-70-2	Calcium	293000		E	PJ
7440-47-3	Chromium	44.2			Р
7440-48-4	Cobalt	17.8	В		Р
7440-50-8	Copper	50.8		E	PJ
7439-89-6	Iron	63600		E	PJ
7439-92-1	Lead	29.5			P
7439-95-4	Magnesium	73000		E	PJ
7439-96-5	Manganese	2340		E	PJ
7439-97-6	Mercury	0.1	U		AV
7440-02-0	Nickel	28.1	В		Р
7440-09-7	Potassium	5940		2	P
7782-49-2	Selenium	3.5	Ü	N_	PR
7440-22-4	Silver	1.1	υ		Р
7440-23-5	Sodium	27500		E	PJ
7440-28-0	Thallium	4.1	U	N	PUJ
7440-62-2	Vanadium	47.0	В	E	PJ
7440-66-6	Zinc	146			P
57-12-5	Cyanide	0.6	U		AS

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

SKGW06R-1014	(DISS)	
--------------	--------	--

Lab Name:	GCAL		Contract:		<u> </u>		
Lab Codec	LA024	Case No.:	SAS No.:		SDG No.:	205061509	
Matric (soil	/water)	Water	Lab Sample ID:	20506150904			
Level: (low /	med)_		Date Received:	06/15/05		***************************************	
% Solids:		_					

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M	7
7429-90-5	Aluminum	32.4	В		P	1
7440-36-0	Antimony	5.4	В	 	P	1
7440-38-2	Arsenic	3.8	U	N	P	1
7440-39-3	Barium	253			P	7
7440-41-7	Beryllium	0.1	υ		P	7
7440-43- 0	Cadmium	0.1	Ū		P	٦
7440-70-2	Calcium	199000			P	1
7440-47-3	Chromium	1.5	В		P	٦
7440-48-4	Cobelt	1.1	В		Р	7
7440-50-8	Copper	0.7	U		P	٦
7439-89-6	iron	10.5	U		P	٦
7439-92-1	Leed	1.4	U		Р	٦
7439-95-4	Megnesium	34000			P	٦
7439-96-5	Manganese	224		<u> </u>	P	1
7439-97-6	Mercury	0.1	U		AV	٦
7440-02-0	Nickel	0.4	U		Р	7
7440-09-7	Potaesium	2680	В		P	7
7782-49-2	Selenium	3.5	U	N	P	٦,
7440-22-4	Silver	1.1	U		Р	٦
7440-23-5	Sodium	22800			P	٦
7440-28-0	Thelium	4.1	U		P	٦
7440-62-2	Vanadium	11.9	В	3 - 1	P	7
7440-66-6	Zinc	12.1	В		P	7

alistas S

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	

Comments:

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

SKGW07R-1014 (DISS)

						(3.55)
Lab Name: G	CAL	Contra	nct:			
Lab Code: LA	024 Case No.:	SAS N	o.:	SDG No.:	205061	1509
Matrix: (soil / w	vater) Water	Lab Sam	ple ID: 2050615090)5		= . =
Level: (low / me	ed)	Date Re	ceived: 06/15/05			
% Solids:		Date He	OBITEG. 00/10/05			
Concentration	Units (ug/L or mg/kg dry weig	ght) : ug/L				
CAS No.	Analyte	Concentration	С	Q	M	
7429-90-5	Aiuminum	24.0	В		P	
7440-36-0	Antimony	6.0	В		Р	
7440-38-2	Arsenic	3.8	U	N	Р	
7440-39-3	Barium	111	В		Р	
7440-41-7	Beryllium	0.1	Ü		P	
7440-43-9	Cadmium	0.1	U		Р	
7440-70-2	Calcium	191000			Р	
7440-47-3	Chromium	32.8			Р	
7440-48-4	Cobalt	0.6	U		Р	
7440-50-8	Copper	0.7	U		Р	
7439-89-6	Iron	56.1	В		Р	
7439-92-1	Lead	1.4	U		Р	
7439-95-4	Magnesium	29400			Р	
7439-96-5	Manganese	908			Р	
7439-97-6	Mercury	0.1	U		AV	
7440-02-0	Nickel	0.4	U		Р	
7440-09-7	Potassium	2400	В		Р	,
7782-49-2	Selenium	3.5	U	N ·	P	41
7440-22-4	Silver	1.1	U		Р	
7440-23-5	Sodium	26600			Р	
7440-28-0	Thallium	4.1	U		Р	
7440-62-2	Vanadium	11.0	В		Р	
7440-66-6	Zinc	14.3	В		Р	

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	-----------------	------	-------

SKGW59-1014

Lab Name: GC/ Lab Code: LA02 Matrix: (soil / wate Level: (low / med % Solids:	Case No.:	Contra	at	<u> </u>	
latric (soil / wate					
evel: (low / med	er) Water	SAS N	o.:	SDG	No.: 205061509
		Lab Sam	ple ID: 205061	150907	
	,				
L Solide:	<i>'</i>	Date Red	zeived: 06/16/	25	
					
Concentration Un	nits (ug/L or mg/kg dry we	ight): ug/L			
CAS No.	Analyte	Concentration	С	Q	M
429-90-5	Akıminum	2390		E	PJ
440-36-0	Antimony	7.2	В		Р
440-38-2	Arsenic	4.1	В		Р
140-39-3	Barium	85.2	В		P
	Beryllium	0.1	U		Р
	Cadmium	0.1	U		P
	Calcium	238000		E	PJ
440-47-3	Chromium	30.7			P
440-48-4	Cobalt	4.7	В		P
	Copper	5.0	B	<u>E</u>	PJ
	iron Lead	10500	В	E	P
	Megnesium	56000		E	
	Manganese	566		E	P 7
	Mercury	0.1		<u> </u>	
	Nickel	0.4	 -		P
	Potassium	22500	`	F	<u> Р</u>
	Selenium	3.5	U	N	P R
	Silver	1.1	U		P
140-23-5	Sodium	148000		E	P J
440-28-0	Thellium	4,1	U	N	PWJ
140-62-2	Vanadium	19.5	В	E	P 7
440-66-6	Zinc	36.0			P -
7-12-5	Cyanide	0.6	U		AS

FORM I - IN

Comments:

1

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

SKGW61-1014

Matrix: (soil / water) Water Lab Sample ID: 20506150909 Level: (low / med) Date Received: 06/16/05 % Solids: Concentration Units (ug/L or mg/kg dry weight): ug/L CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 5930 E P 7440-36-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 10.1 U P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P P	O6/16/05 Q M E P P P P P P P P P P P P P P P P P P P	Lab Code: LA024							
Matrix: (soil / water) Lab Sample ID: 20506150909 Level: (low / med) Date Received: 06/16/05 % Solids: Concentration Units (ug/L or mg/kg dry weight): ug/L CAS No. Analyte Concentration C Q M CAS No. Analyte Concentration C Q M M M 7440-36-0 Antimony 10.4 B P P At40-38-2 Arsenic 8.8 B P P P P 7440-39-3 Barlum 101 B P P P P 7440-41-7 Beryllium 0.2 B P P P P 7440-42-9 Cadrium 0.1 U PP P P 7440-72-2 Calcium 233000 E PP P P 7440-47-3 Chromium 9.1 B PP P P P P P P P P P P P P P P P P P P P P P P <th colspan<="" td=""><td>20506150909 06/16/05 Q M P F P J P P F P J P P P P P P P P P P P</td><td> Matric (soil / water) Water Lab Sample ID: 20506150909 </td><td>Lab Name: G</td><td>CAL</td><td>Con</td><td>tract:</td><td><u> </u></td><td></td></th>	<td>20506150909 06/16/05 Q M P F P J P P F P J P P P P P P P P P P P</td> <td> Matric (soil / water) Water Lab Sample ID: 20506150909 </td> <td>Lab Name: G</td> <td>CAL</td> <td>Con</td> <td>tract:</td> <td><u> </u></td> <td></td>	20506150909 06/16/05 Q M P F P J P P F P J P P P P P P P P P P P	Matric (soil / water) Water Lab Sample ID: 20506150909	Lab Name: G	CAL	Con	tract:	<u> </u>	
Date Received: O6/16/05	Q M T F P T P T P T P T P T P T P T P T P T	Date Received: O6/16/05 O6/	Lab Code: LA	024 Case No.: _	SAS	No.:	SDG	No.: 205061509	
Date Received: O6/16/05	Q M T F P T P T P T P T P T P T P T P T P T	Date Received: Date	Matrix: (soil / wa	ater) <u>Water</u>	Lab Sa	ample ID: 20506	150909		
## Solids:	Q M F P P T P T P P T P P P P P P P P P P P	Concentration Units (ug/L or mg/kg dry weight): ug/L	Level: (low / me	ed)					
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 5930 E P 7440-36-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-48-4 Cobalt 6.4 B P 7440-48-4 Cobalt 6.4 B P 7439-89-6 Iron 18200 E P 7439-95-1 Lead 8.3 P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 11110 E P 7440-09-7 Potassium 8270 P 7440-09-7 Potassium 8270 P 7440-22-4 Silver 1.1 U P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P P P P P P P P P P P P P P P P P P P	Concentration Units (ug/L or mg/kg dry weight): ug/L CAS No.			Date r	Received: U6/16/	705		
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 5930 E P 7440-36-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barium 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-48-4 Cobalt 6.4 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7440-02-0	E P P P P P P P P P P P P P P P P P P P	CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 5930 E P 7440-38-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 101 B P 7440-43-1 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-43-9 Cadmium 0.1 U P 7440-47-3 Chromium 9.1 B P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-48-5 Copper 11.6 B E P J 7439-98-6 Iron 18200 E P J J J J J J J J	A Solids.						
7429-90-5 Aluminum 5930 E P 7440-36-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-43-9 Cadmium 0.1 U P 7440-43-9 Calcium 233000 E P 7440-43-9 Calcium 233000 E P 7440-43-9 Calcium 9.1 B P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-48-4 Cobalt 6.4 B E P 7439-89-6 Iron 18200 E P 7439-99-1 Lead 8.3 P P 7439-95-4 Magnesium	E P P P P P P P P P P P P P P P P P P P	Table Tabl	Concentration I	Units (ug/L or mg/kg dry weig	ht) : ug/L				
7440-36-0 Antimony 10.4 B P 7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-43-9 Cadmium 9.1 B P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-48-4 Cobalt 6.4 B P 7439-89-6 Iron 18200 E P 7439-98-6 Iron 18200 E P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110	P P P P P P P P P P P P P P P P P P P	10.4 B	CAS No.	Analyte	Concentration	C	Q		
7440-38-2 Arsenic 8.8 B P 7440-39-3 Barlum 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver	P P P P P F P F P P F P F P F P F P F P	Arabic Arabic Read Rea	7429-90-5	Aluminum	5930		E	PJ	
7440-39-3 Barlum 101 B P 7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-95-5 Manganese 1110 E P 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium	P P P E P F P F P F P F P F P F P F P F	Table Tabl	7440-36-0	Antimony	10.4	В		P	
7440-41-7 Beryllium 0.2 B P 7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J P P P P P P P P P P P P P P P P P	Table Tabl	7440-38-2	Arsenic	8.8	В		P	
7440-43-9 Cadmium 0.1 U P 7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7440-96-5 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J P P F P N P WJ E P AS	Table Tabl	7440-39-3	Barlum	101	В		P	
7440-70-2 Calcium 233000 E P 7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J P P P P P P P P P P P P P P P P P	Table Tabl	7440-41-7	Beryllium	0.2	В		P	
7440-47-3 Chromium 9.1 B P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J E P J AV P R P T N P T E P T AS	Color Before: LT.YELLOW Clarity Before: CLEAR Feature: Color Before: LT.YELLOW Clarity Before: CLEAR Feature: Color Before: LT.YELLOW Clarity Before: CLEAR Texture: Color Before: CLEAR Texture: CLEAR Te	7440-43-9	Cadmium	0.1	U	······································	Р	
7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J E P J AV P R P T N P T E P T AS	Color Before: LT.YELLOW Clarity Before: CLEAR Feature: Color Before: LT.YELLOW Clarity Before: CLEAR Feature: Color Before: LT.YELLOW Clarity Before: CLEAR Texture: Color Before: CLEAR Texture: CLEAR Te	7440-70-2	Calcium	233000		Ε	T P T	
7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J P P P P P P P P P P P P P P P P P	T440-50-8	7440-47-3		9.1	В	•		
7440-50-8 Copper 11.6 B E P 7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J P J AS	T440-50-8		Cobalt	6.4	В	· · · · · · · · · · · · · · · · · · ·	P	
7439-89-6 Iron 18200 E P 7439-92-1 Lead 8.3 P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodłum 33500 E P	E P J P J AV P P P P P P P P P P P P P P P P P P	Taylog			11.6	В	E	PJ	
7439-92-1 Lead 8.3 P 7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J AV P R P D D D D D D D D D D D D D D D D D	Table Tabl				 	E		
7439-95-4 Magnesium 51700 E P 7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J AV P R P P N P S S S S S S S S S S S S S S S S	T439-95-4 Magnesium				 		_	
7439-96-5 Manganese 1110 E P 7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	AV P P N P R P I E P N P I E P AS	T439-96-5 Manganese		_1		 	E		
7439-97-6 Mercury 0.1 U AV 7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	AV P P N P R P I E P N P I E P AS	7439-97-6 Mercury		_		 		 	
7440-02-0 Nickel 0.4 U P 7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	P P N P E P N P UJ E P AS	T440-02-0 Nickel 0.4 U				1 11			
7440-09-7 Potassium 8270 P 7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	P R P R P J J W J E P AS	Range				<u> </u>			
7782-49-2 Selenium 3.5 U N P 7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	N P R J J J E P J J AS	Trace		<u> </u>		 			
7440-22-4 Silver 1.1 U P 7440-23-5 Sodium 33500 E P	E P J WJ E P AS	Table Tabl				 		1 · ·	
7440-23-5 Sodium 33500 E P	E P J N P UJ E P J AS	Table Tabl				 			
	P AS	7440-66-6 Zinc 54.3 P				 	E		
7440-28-0 Thallium 44 11 N D	P AS	7440-66-6 Zinc 54.3 P				 ,, 			
	P AS	7440-66-6 Zinc 54.3 P						 	
	AS	Color Before: LT.YELLOW Clarity Before: CLEAR Texture:				 		 	
		مرامات Color Before: LT.YELLOW Clarity Before: CLEAR Texture:				 			
7440-66-6 Zinc 54.3 P			7440-66-6	Zinc	54.3		E	AS	
	radiacia.		Comments:						

FORM I - IN

ILM04.1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEE	INORGANIC	ANALYSIS	DATA	SHEET
------------------------------	-----------	----------	------	-------

SKG	44C 4	4044	
200.5		1014	•

ab Name: GCAL				SKG	5W 64-1014
		Co	ntract:		
b Code: LA024	Case No.:	SA:	S No.:	SDG1	No.: 205061509
urbc (soil/water)	Water	Lab S	Sample ID: 205061	50910	<u>.</u>
vel: (low/med)		Date	Received: 06/16/0) 5	
Solida:					
oncentration Units (1	ug/L or mg/kg dry weigh	n): wg/L			
CAS No.	Analyte	Concentration	C	Q	M
29-90-5 Alum	ninum	66200		E	PJ
0-36-0 Antir	morry	33.4	В		Р
0-38-2 Aree		3.8	U		Р
0-39-3 Bari	um .	174	В		Р
	Sum	3.7	В		Р
	mium	0.1	U		P
0-70-2 Calc		441000		Ε	PJ
	mium	93.8			Р
0-48-4 Cob		63.9			P
1-50-8 Cop	per	66.4		Ε	PJ
-89-6 Iron		150000		E	PJ
-92-1 Lees		58.9			Р
95-4 Me g	nesium	105000		E	PJ
	ganese	4290		E	PJ
-97-6 Merc	cury	0.1	Ü		AV
-02-0 Nick	al	102			Р
	esium	21000		75/	P
-49-2 Sele	nium	3.5	U	N	PR
-22-4 Silve	ж	1.1	Ų		Р
-23-5 Sodi	ium	46300		E	PJ
	lium	4.1	U	N	PUJ
	adium	89.3		E	PJ
0-66-6 Zinc		337			Р
12-5 Cya	nide	0.6	U		AS

FORM I - IN

Comments:

ILM04.1

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

SKGW63-1014

Matrix: (soil / water) Level: (low / med) % Solids:	Case No.:	Contra SAS N	<u>,</u>		
Matrix: (soil / water) Level: (low / med) % Solids:) Water	SAS N	_		
Level: (low / med) % Solids:			ło.:	SDG N	No.: 205061509
% Solids:		Lab San	nple ID: 205061	50911	
			ceived: 06/16/0	· · · · · · · · · · · · · · · · · · ·	
		Date No	. <u> </u>		
Concentration Units	(ug/L or mg/kg dry weigh	t): ug/L			
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5 Alu	uminum	99900		Е	PJ
7440-36-0 An	itimony	53.5	В		Р
7440-38-2 An	senic	3.8	U		Р
7440-39-3 Ba	ırium	617			Р
7440-41-7 Be	eryllium	5.3			P
	admium	0.1	U		P
	alcium	922000		E	PJ
	romíum	120		· · · · · · · · · · · · · · · · · · ·	Р
	balt	99.3			P
	pper	187		E	PJ
7439-89-6 Iro		223000		E	PJ
	ad	140			Р
	agnesium	184000		E	PT
	anganese	8490		E	PJ
	ercury	0.2			AV
	ckel	171			P
	otassium	22000		<u> </u>	P
	elenium	3.5	U	N N	PR
	ver	1.1	U		P
	dium	71100		E	PT
	allium	4.1		N	P JUJ
	ınadium	133		E	
7440-66-6 Zin		637			P 3
	ranide	0.6	U	V	AS

FORM I - IN

ILM04.1

EPA SAMPLE NO.

INORGANIC	ANIAL VOIC	DATA	CHEET
PRINCIPANIC.	ANALTOIS	DATA	SHEET

		SKGW62A-1014	
Lab Name: GCAL	Contract:		
Lab Code: LA024 Case No.:	SAS No.:	SDG No.: 205061509	
Matric (soil / water) Water	Lab Sample ID: 205061509	012	
Level: (low/med)	Date Received: 06/16/05		
% Solids:		_	

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	19800	1	E	P
7440-36-0	Antimony	15.5	В		Р
7440-38-2	Arsenic	4.5	В		P
7440-39-3	Barium	464			P
7440-41-7	Beryllium	0.9	В		P
7440-43-9	Cadmium	0.1	U		Р
7440-70-2	Calcium	274000		E	P
7440-47-3	Chromium	42.5			Р
7440-48-4	Cobelt	20.5	В		Р
7440-50-8	Copper	40.8		E	Р
7439-89-6	iron	48000		E	P
7439-92-1	Lead	32.3			Р
743 9-9 5-4	Magnesium	79000		E .	P
7439-96-5	Manganese	1430		E	Р
7439-97-6	Mercury	0.1	U		AV
7440-02-0	Nickel	15.8	В		P
7440-09-7	Potassium	13200		7	Р
7782-49-2	Selenium	3.5	U	N	Р
7440-22-4	Silver	1.1	U		P
7440-23-5	Sodium	122000		E	Р
7440-28-0	Thallium	4.1	U	N	P
7440-62-2	Vanadium	42.8	В	Ε	P
7440-66-6	Zinc	150			P
57-12-5	Cyanide	0.6	В		AS

Color Before:	LT.BROWN	Clarity Before:	CLEAR	Texture:	
Color After:	LT.BROWN	Clarity After:	CLEAR	Artifacts:	

Comments:

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

		INORGANIC AN	ALTOIS DATA S	PUCCI	SKGW59	1014 (DISS)	
Lab Name:	GCAL		Contract:				
Lab Code:	LA024	Case No.:	SAS No.:		SDG No.:	205061509	

Matrix: (soil / water) Water Lab Sample ID: 20506150914

Level: (low / med) _____ Date Received: _06/16/05

Concentration Units (ug/L or mg/kg dry weight): ug/L

% Solids:

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	16.4	U		P
7440-36-0	Antimony	7.7	В	·	Р
7440-38-2	Arsenic	3.8	U	N	P
7440-39-3	Barium	24.6	В		Р
7440-41-7	Beryllium	0.1	υ		Р
7440-43-9	Cadmium	0.1	U		P
7440-70-2	Calcium	240000			P
7440-47-3	Chromium	0.8	U		P
7440-48-4	Cobalt	0.6	U		Р
7440-50-8	Copper	0.7	U		P
7439-89-6	Iron	10.5	U		Р
7439-92-1	Lead	1.4	U		Р
7439-95-4	Magnesium	54600			P
7439-96-5	Manganese	0.1	U		Р
7439-97-6	Mercury	0.1	U		AV
7440-02-0	Nickel	0.4	U	· · · · · · · · · · · · · · · · · · ·	Р
7440-09-7	Potassium	23200			P
7782-49-2	Selenium	3.5	U	N	Р
7440-22-4	Silver	1.1	U		P
7440-23-5	Sodium	151000			P
7440-28-0	Thallium	4.1	U	 -	P
7440-62-2	Vanadium	16.0	В		Р
7440-66-6	Zinc	12.5	В		P

113/05

uJ

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

INO		ORGANIC ANALYSIS DATA SHEET			SKGW61-1014 (DISS)		
ab Name:	GCAL		Con	tract:		<u> </u>	<u></u>
nb Code: 1	LA024	Case No.:	SAS	No.:		SDG No.:	205061509
latric (soil /	(water)	Water	Lab Sa	imple ID:	20506150916		
evet (low/	med) _	<u>-</u> -	Date F	teceived:	06/16/05		_
Solida:		_					
Concentratio	on Units (c	ug/L or mg/kg dry weigh	t): Ug/L				
CAS No.	T	Analyte	Concentration	C		Q	M

CAS No.	Analyte	Concentration	С	Q	M]
7429-90-5	Aluminum	16.4	U		Р	1
7440-36-0	Antimony	7.6	В		P	1
7440-38-2	Arsenic	3.8	U	N	P	1
7440-39-3	Barium	46.3	В		Р	1
7440-41-7	Beryllium	0.1	U		P	1
7440-43-0	Cadmium	0.1	U		Р	1
7440-70-2	Calcium	211000			P	1
7440-47-3	Chromium	0.8	U		P	1
7440-48-4	Cobelt	1.4	В		P	1
7440-50-8	Copper	0.7	U		P	1
7439-89-6	iron	122			Р	7
7439-92-1	Leed	1.4	U		P	7
7439-95-4	Magnesium	45800			Р	1
7439-96-5	Mengenese	953			P	7
7439-97-6	Mercury	0.1	U		AV	7
7440-02-0	Nickel	0.4	U		Р	1
7440-09-7	Potassium	7010			P	_ أ
7782-49-2	Selenium	3.5	U	N	P	TU.
7440-22-4	Silver	1.1	U		P	1
7440-23-5	Sodium	35400			P	†
7440-28-0	Thellium	4.1	U		Р	1
7440-62-2	Vanadium	12.9	В		Р	7
7440-66-6	Zinc	13.7	В		Р	†

مَنْ المِلَا

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SKGW64-1014 (DISS)

Lab Name:	GCAL		_ Contract:				
Lab Code:	LA024 Case	No.:	SAS No.:		SDG No.:	205061509	
Matrix: (soil	/water) <u>Water</u>		Lab Sample ID:	20506150917			
Level: (low /	med)		Date Received:	06/16/05			
% Solids:							
Concentration	on linite (ua/li or ma/ka /	in weight) · · · · · · · · · · · · · · · · · · ·					

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	23.4	В	· · · ·	P
7440-36-0	Antimony	5.8	В		P
7440-38-2	Arsenic	3.8	U	N	Р
7440-39-3	Barium	32.1	В		Р
7440-41-7	Beryllium	0.1	U		Р
7440-43-9	Cadmium	0.1	U		P
7440-70-2	Calcium	181000			Р
7440-47-3	Chromium	0.8	Ü		Р
7440-48-4	Cobalt	0.6	U		Р
7440-50-8	Copper	0.7	U		Р
7439-89-6	iron	10.5	U		Р
7439-92-1	Lead	1.4	υ		Р
7439-95-4	Magnesium	57300			P
7439-96-5	Manganese	115			Р
7439-97-6	Mercury	0.1	U		AV
7440-02-0	Nickel	0.4	U		Р
7440-09-7	Potassium	10100			Р
7782-49-2	Selenium	3.5	U	N	Р
7440-22-4	Silver	1.1	U	- 1 1	Р
7440-23-5	Sodium	46300			P
7440-28-0	Thallium	4.1	U		P
7440-62-2	Vanadium	15.8	В	· · · · · · · · · · · · · · · · · · ·	Р
7440-66-6	Zinc	7.5	В		Р

سرار لااا

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	· · · · · · · · · · · · · · · · · · ·
Commente:					

uJ

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

Lab Name: GC/ Lab Code: LA02	<u>u</u>	Contra	et:		
ab Code: LA02			·		
	Case No.:	SAS N	o.:	SDG	No.: 2050615
atric (soil/web	er) Water	_ Lab Sam	ple ID: 2050	6150918	
vet (low/med	·)				
Solida:			ceived: <u>06/10</u>	<u>6/05</u>	
	nits (ug/L or mg/kg dry we		_ -	_	·
CAS No.	Analyte	Concentration	<u> </u>	Q	M
	Aluminum	31.7	В		Р
	Antimony	6.4	В		Р
	Arsenic	3.8	U	N	Р
40-39-3	Barium	31.0	В		P
40-41-7	Beryllium	0.1	U		Р
	Cadmium	0.1	U		P
10-70-2	Calcium	245000			P
10-47-3	Chromium	0.8	U		P
	Cobalt	2.1	В	 	P
	Copper	0.7	U	·	Р
39-89-6	Iron	1840			P
39-02-1	Leed	1.4	U		P
39-95-4	Magnesium	56800			Р
39-96-5	Manganese	1980	 		P
39-97-6	Mercury	0.1	U		AV
40-02-0	Nickel	0.4	U		Р
40-09-7	Potassium	7300			P _
82-49-2	Selenium	3.5	U	<u>N</u>	P
40-22-4	Silver	1,1	U		Р
40-23-5	Sodium	66300			Р
40-28-0	Thellium	4.1	U		Р
	Vanedium	14.7	B		P
440-66-6	Zinc	10.2	B		Р
				(Majos
					9/05

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	

Comments:

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

SKGW62A-1014	(DISS)
--------------	--------

				5.1	O11021 1011 (2100)	
Lab Name: 0	GCAL	Cont	ract:			
Lab Code: LA	A024 Case No.:	SAS	No.:	SDG	No.: 205061509	
Matrix: (soil / v	vater) Water	Lab Sa	mple ID: _2050615	50919		
Level: (low / m	ned)		eceived: 06/16/05			
% Solids:		Dato A	<u> </u>	<u>, </u>		
Concentration	Units (ug/L or mg/kg dry weig	ht): ug/L				
CAS No.	Analyte	Concentration	С	Q	M	
7429-90-5	Aluminum	36.6	В	·	P	
7440-36-0	Antimony	6.7	В		P	
7440-38-2	Arsenic	3.8	U	N	Р	
7440-39-3	Barium	112	В		Р	
7440-41-7	Beryllium	0.1	U		Р	
7440-43-9	Cadmium	0.1	U		Р	
7440-70-2	Calcium	133000			Р	
7440-47-3	Chromium	0.8	U		Р	
7440-48-4	Cobalt	0.6	U		Р	
7440-50-8	Copper	0.7	U		Р	
7439-89-6	iron	10.5	U		P	
7439-92-1	Lead	1.4	U		Р	
7439-95-4	Magnesium	55900			Р	
7439-96-5	Manganese	65.0			Р	
7439-97-6	Mercury	0.1	U		AV	
7440-02-0	Nickel	0.4	υ		Р	
7440-09-7	Potassium	8910			P 1	
7782-49-2	Selenium	3.5	J	N	PUJ	
7440-22-4	Silver	1.1	Ü		Р	
7440-23-5	Sodium	126000			Р	
7440-28-0	Thallium	4.1	U		Р	
7440-62-2	Vanadium	16.0	В		Р	
7440-66-6	Zinc	5.5	В	·	Р	
					9/13/25 mor	
Color Before:	COLORLESS	Clarity Before:	CLEAR	. Text	ure:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifa	acts:	

Comments:

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SK	~	. 4	Λ4	4
30	-	- 1	uı	•

					SKGW60	D-1014	
Lab Name: GCAL	•		Contract: _				
Lab Code: LA024	Case No.:		SAS No.:		SDG No.:	205061509	,
Matric (soil / water) Water	La	ab Sample ID:	20506150921			
Levet: (low / med)		D	ate Received:	06/17/05	-		
% Solids:							
Concentration Unit	is (ug/L or mg/kg dry weigh	n): ug/L					
CAS No.	Analyte	Concentrati	on C	;	Q	M	

CAS No.	Analyte	Concentration	С	Q	M	7
7429-90-5	Aluminum	74200		E	Р	15
7440-36-0	Antimony	36.7	В		Р	1
7440-38-2	Arsenic	3.8	U		P	1
7440-39-3	Barium	181	В		P	1
7440-41-7	Beryllium	4.3	В		Р	1
7440-43-9	Cadmium	0.1	U		P	1_
7440-70-2	Calcium	568000		E	P	73
7440-47-3	Chromium	106			P	1
7440-48-4	Cobelt	77.6			P	1 .
7440-50-8	Copper	83.7		E	P	子
7439-89-6	Iron	160000		E	P	77
7439-92-1	Leed	78.7			P	1
7439-95-4	Megnesium	86700		E	Р	7丁
7439-96-5	Manganese	4340		E	Р	コエ
7439-97-6	Mercury	0.2			AV	1
7440-02-0	Nickel	105			P	1
7440-09-7	Potassium	19100		2	P	1_
7782-49-2	Selenium	3.5	υ	Ň	P	7 K
7440-22-4	Silver	1.1	U		Р	1
7440-23-5	Sodium	19500		E	Р	「
7440-28-0	Thellium	4.1	U	N	Р	UI
7440-62-2	Vanadium	103		Ε	Р	ゴ
7440-66-6	Zinc	391			Р	1

Color Before:	DK.BROWN	Clarity Before:	CLOUDY	Texture:
Color After:	DK.BROWN	Clarity After:	CLOUDY	Artifacts:
Comments:				

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

		'	HORGANIC ANALYSIS DATA SHEET		SKGW58-1014			
Lab Name:	GCAL		Con	tract:				
Lab Code:	LA024	_ Case No.:	SAS	No.: _		SDG No.:	205061509	
Matrix: (soil	/ water)	Water	Lab S	ample ID:	20506150922			
Level: (low	/ med) _		Date F	Received:	06/17/05		· -	
% Solids: _		_						
Concentrati	ion Units (ı	ug/L or mg/kg dry weig	ht): ug/L					

CAS No.	Analyte	Concentration	C	Q	М	
7429-90-5	Aluminum	17600	······	E	Р	丁丁
7440-36-0	Antimony	14.6	В		Р	1
7440-38-2	Arsenic	6.8	В		Р	7
7440-39-3	Barium	364			P	1
7440-41-7	Beryllium	0.8	В		Р	1
7440-43-9	Cadmium	0.1	U		Р	7
7440-70-2	Calcium	277000		E	Р	1丁
7440-47-3	Chromium	34.4			Р	7
7440-48-4	Cobalt	16.4	В		Р	7
7440-50-8	Copper	41.5		E	Р	구
7439-89-6	Iron	45400		E	Р	13
7439-92-1	Lead	20.7			Р	7
7439-95-4	Magnesium	73800		E	Р	丁
7439-96-5	Manganese	1300		E	Р	子
7439-97-6	Mercury	0.1	U		AV	1
7440-02-0	Nickel	17.8	В		Р	1
7440-09-7	Potassium	8380		- حر	Р	1
7782-49-2	Selenium	3.5	U	N	Р	18
7440-22-4	Silver	1.1	U		Р	1
7440-23-5	Sodium	34700		E	Р	」 フ
7440-28-0	Thallium	4.1	Ū	N	Р	us
7440-62-2	Vanadium	38.0	В	E	P	1
7440-66-6	Zinc	128			Р	1 ~
57-12-5	Cyanide	0.6	U		AS	1

9/13/25 min

Color Before:	LT.BROWN	Clarity Before:	CLEAR	Texture:	
Color After:	LT.BROWN	Clarity After:	CLEAR	Artifacts:	
Comments:					

1

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

SKGW6	1044	WIGG/

				SKC	3W60-1014 (DISS)	
Lab Name: G	CAL	Contra	act:			
Lab Code: LA	024 Case No.:	SAS N	lo.:	SDG	No.: 205061509	
Matric (soil / w	ater) Water	Lab San	nple ID: 20506	i150927		
Level: (low / ma	ed)			-		
		Date Re	ceived: <u>06/17</u>	/05		
% Solide:						
Concentration	Units (ug/L or mg/kg dry we	ight): ug/L				
CAS No.	Analyte	Concentration	С	Q	M	
7429-90-5	Aluminum	50.4	В		Р	
7440-36-0	Antimony	4.00	υ		Р	
7440-38-2	Arsenic	4.5	В	N	P P	
7440-39-3	Barium	18.7	В		P	
7440-41-7	Beryllium	0.1	U		P	
7440-43-0	Cadmium	0.1	U		P	
7440-70-2 7440-47-3	Calcium Chromium	137000 5.1	В	=	P	
7440-47-3 7440-48-4	Cobelt	0.6	Ü		 P	
7440-50-8	Copper	0.6	Ü		 	
7439-89-6	Iron	10.5	U	····	 	
7 439-9 2-1	Leed	1,4	Ü		 	
7439-95-4	Magnesium	30100		_	 	
7439-96-5	Manganese	0.9	В		P	
7439-97-6	Mercury	0.1	Ü		AV	
7440-02-0	Nickel	0.4	U		P	
7440-09-7	Potaesium	6810		-	P	
7782-49-2	Selenium	3.5	υ	N	P US	
7440-22-4	Silver	1.1	U		Р	
7440-23-5	Sodium	20300			P	
7440-28-0	Thelium	4.1	U		Р	
7440-62-2	Vanadium	11.3	В		Р	
7440-66-6	Zinc	9.9	8		Р	
					alula	
Color Before:	COLORLESS	Clarity Before: <u>C</u>	LEAR	Textu	re:	
Color After	COLODI ESS	Clark, After C	LEAD	A -425-	-1	

FORM 1 - IN

Comments:

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

SKGW58-1014 (DISS)	

Lab Name: GCAL	Contract:		
Lab Code: LA024 Case No.:	SAS No.:	SDG No.:	205061509
Matrix: (soil / water) Water	Lab Sample ID: 20506150928		
Level: (low / med)	Date Received: 06/17/05		
% Solids:			
Concentration Units (ug/L or mg/kg dry weight): ug/L			

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	16.4	U		Р
7440-36-0	Antimony	4.00	U		P
7440-38-2	Arsenic	3.8	U	N	Р
7440-39-3	Barium	151	В	,	Р
7440-41-7	Beryllium	0.1	Ü		Р
7440-43-9	Cadmium	0.1	U		Р
7440-70-2	Calcium	114000			Р
7440-47-3	Chromium	0.8	U		Р
7440-48-4	Cobalt	0.6	Ü		Р
7440-50-8	Copper	0.7	U		Р
7439-89-6	Iron	10.5	υ		Р
7439-92-1	Lead	1.4	U		Р
7439-95-4	Magnesium	34500			Р
7439-96-5	Manganese	84.7			Р
7439-97-6	Mercury	0.1	U		AV
7440-02-0	Nickel	0.4	U		Р
7440-09-7	Potassium	4110	В		Р
7782-49-2	Selenium	3.5	U	N	Р
7440-22-4	Silver	1.1	U		P
7440-23-5	Sodium	30600			Р
7440-28-0	Thallium	4.1	U		Р
7440-62-2	Vanadium	11.7	В		Р
7440-66-6	Zinc	10.1	В		P

uJ

9/13/25 mm

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

Lab use only

4342

By submitting these samples, you agree to the terms and conditions contained in our most recent schedule of services.

205061509

Earth Tech 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 225.769.4900 • Fax 225.767.5717 Client Name Workorder # **Due Date** Billto Report to: Lab use only: Analytical Requests & Method Client: Glenn Springs **Custody Seal** Client: EARTH ☐ no Address: Contract used Hebron Ry 41048 Contact: Temperature °C Phone: P.O. Number Project Name/Number SKINNER 54280.01 Sampled By: ROGER Lab ID D155 Date ergalpe Matrix1 Sample Description Preservatives Con-6/15 (2400) Remarks: x StGWO6R-1014-30 6-14-00 1515 Various x SKGW07R-1014 6-14-021-22-☐ 24-48 hrs. Turn Around Time: ☐ 3 days ☐ 1 week Standard ☐ Other Samples sent via fed Ex Standard Turnaround Received by: (Signature) Date: Time: 6-14-05 1300 Relinquished by: (Signature)
Fully 1429 4914 4460 Received by; (Signature) Date: Time: 6-1505 40U Relinquished by: (Signature) Received by: (Signature)

Date:

Time:

- PINK: CLIENT CANARY: LABORATORY WHITE: CLIENT FINAL REPORT

TOTAL COAST ANALYTICAL LABORATORIS, INC. 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 228.769.4900 • Fax 228.767.5717	Cilent Name	934Z Client #	205061509 Workorder #	6-30-05 Due Date
Address: 2373 Progress DR Hebron, KY 41049 Contact: Pat Higgins Contact: Phone: 859 - 442 - 2300 Phone: Fax: 859 - 442 - 231/ Fax: CO. Number Project Name/Number 54280.01 Skinner Landfill - 2 contact: Con	13.65	Analytical Requests &	Method Lab use only: Custody Seal used 2/9 in tact 1/9 Temperature *C	
ROSE Hutton Sample Description which Date (2400) $\frac{c}{m}$ Sample Description which Starts SkGW63-10/4 - 2 SkGW64-10/4 - 2		- X PCB' - X Total	-12 15 7(TCL) que Table 8 (-	
			for the	lan ist es
Turn Around Time: 24-48 hrs. 3 days 1 w	10-4		t via Fed Ex Turnaround	

By submitting these samples, you agree to the terms and conditions contained in our most recent schedule of services

CHAIN OF CUST DY RECORD

Lab use only 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 225.769.4900 • Fax 225.767.5717

Client Name

4342 | 205061509

ſ			Re	por	t to:	:					Bi	illto				_	Δna	lydics	ıl Re	71166	te &	Meth	and		7	Lab u	se only	:			
	Clie	nt: E F	IRTY	1 -	TE	4			Clien	t: ⊆ [:	enn_	Sor	zeńi		1 1	ı	<u> ا</u>			4 0 03				. 1	İ		stody S		_		1
	Addres	s: 23	73	Pro	90	225	DR		Address	s:<	enn	ract	<u> </u>										Ì		ļ						İ
Į		He	وم طع	'n.	L	'Y 4	F104	18								ĺ		- 1	4	ı		ĺ							□ n	•	ł
l	Conta	ct: <u> P</u>	TF	\mathcal{H}_{I}	G	GIN-	2		Contac	:t:						}		}	P	- }				. }	1	Ten	nperatu	re °C _	3		
Į	Phon	ie: <u>8</u> 5	9-4	142	<u>} </u>	230	0		Phone	e:		 -			9		ļ	4	To let		l		ļ		-						l
			9-4			-23			Fa	x:]==	u	1	Metals	8				- 1	4]
	P.O. Number Project Name/Number 54280.01 Skwner Landfill - 2nd Qtr. 05						0	9	ļ	et	7	4	W										İ								
- (542	280	.0/	_ :	5k	WNE	K L	Ans	143(1		<u> </u>	64	T. O.		10	- 3		٤	5	9	ğ	}	1	1	1						ì
	Sample	ю ву: SS	. L	1-	41		1	1	Col	// ,	_				7	~ }	جر	_	d	Volatiles	3	İ		_	, d	5				1.4	[
ŀ	<u>r</u> o	SEK		रूप	FL.	1	Des	_	91	1/4	ζ	<u> </u>		No	\ \\ \varepsilon \\ \	G.	3	£	-3		×	Ì	ľ	C	! 个					Lai	OID .
	Matrix ¹	Date	Time (2400)	COED	r a b	Sample	e Descr	iption			· P-4	P Top top	reservatives	Con- tainers	2	Peer	م	100	Disso	S	O		1			Remar	ks:				/
ı	W	-েকেন্ত	13/6		X	SK	GW	50	7-10	10	-33		lerious		X		\rightarrow	X		N	X	-Xi	N	1	-	RA	7	, To	blei	1.7	7
*	W				5	Sk	GUI	5	7 10	110	٥٤٠٩	12	· (1 (0)(5	9		_		X		X	<u></u>	1	٨	37	<u> </u>		TCL				E
				, ,										 					' '	<u></u>	\exists	'	7	5)	 						
	W				_, ,				-/01			333		3	├┼	\dashv			\dashv	<u> </u>	-	_#	124	5]	, V			<u> </u>	1 -	4
Ì		645							1-10		/ 4			3	\bot	_	\dashv			X	}	44				ah.	the	fir	10	1_4	0
- [W	6-12	1035		X	Ske	3W 6	3-1	1014		/ 1	36		.3						N		M	_	5		0 4	M	PI	en l'	7_1	
- 1	2	6-15	1130		X	SKE	; W e	52A	- 10	14	3	,4		3						N		M	Į.	2/	١	for:	the	List	- 3	<u>.</u>	7
ĺ							o E	$\overline{}$				1		3			7			70	\neg	1	5	4			ina	1.1	ic.	,	3
			-			111	4) (VA-L	162		<u>-</u> -					\dashv		-+	\dashv	4	十		4	7	-+'	9/	fNd	44			-
l						 								 	{ -}	\dashv	\dashv		+		-	-+	-+		\dashv						
				-										<u> </u>	 						_				-					<u> </u>	
																	_			_	_										
																ŀ	İ					İ									
						}											\neg					\neg	T	7	\top						
Ì						<u> </u>								<u> </u>		\dashv			\dashv	$\neg \uparrow$			_	十	_						
9	<u>≯</u>					NI-	~ ^l		D0	ر (1-1	+	}		\dashv		-		-	+	\dashv		;				
7									Dyp		4.	_		<u> </u>																	
	Turn A				24-						1 week		Standa		0																==
	Relingui		(Signal	1	١			ed by: ((Signatur E y	u)		Date:	i	BO ()	Note:	-		. ^	loc	•	Se v	, +		VU	Q	FE	Ø	EX			į
4	Religiqu	shed by	: (Signal	ture)					Signatur	97		Date:	, Ti	me:		ر س	~(*	۲,	ب	,	~ ~ V	. ,				Ì		_, ¬			
		¥ 79			981			chl			- 	616		15		54	tai	~q	95	d	7	Tuf	27)	AR	ou	nd					};
	Relinqui	shed by	: (Signa	ture)			Receive	ed by:	(Signatur	e)		Date:	, Ti	me:	By su condi	ıbmıt	ting ti	nese	samp	ies, y	ou a	gree 1	io the	e term	is and	1					

GCAL:	
GULF COAST ANALYTICAL LABORATORIST, INC. 7979 GSRI Avenue, Baton Rouge, Louisiar	na 7082

CHAIN OF CUSTODY RECORD

GULF COAST ANALYTICAL LABORATORIES, INC. 7979 GSRI Avenue, Baton Rouge, Louisian		Easth 7.		4342	20506160	09 6-30	0-05
Phone 225,769.4900 • Fax 225.76	17.8717	Client Name		Client #	Workorder	# Due	Date
54280.01 Skinn Sampled By:	Cilent Glenn Address: Cault Contact: Phone:	s/-t	-Volatiles	malytical Requests & N	Cus	et only: stody Seal sed Tyes no tact Tyes no	
W 645-45 1130 1 5 5 5	ple Description #16 6 6 6 6 6 6 6 6 6		X X Seri	A X X X X X X X X X X X X X X X X X X X	Remark Refer Tab Tab For A a	to Table 9	Lab ID
Turn Around Time: 24-48 hrs Relifiquished by: (Signature) 7973079796/9 Relinquished by: ture)	S.	/ -	Other_ Note: Sq,	mples Sentandar d g these samples, you agr	VIA FER TURNARO	d Ex	

G(A	L	
GULF COAST ANALYT	ICAL LABORATO	RIES, INC	

. 00

ີ. ^

CHAIN OF	Cus C	DY R	ECORD
----------	-------	------	-------

	Lab use only					_	
FULF COAST ANALYTICAL LABORATORIES, INC 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 225.769.4900 • Fax 225.767.5717	Early	h Tech		4342	20566	1509	7-1-05
Phone 225.769.4900 • Fax 225.767.5717	Client N	lame		Client #	w	orkorder #	Due Date
Report to: Client: EARTH TECH Address: 2373 Progress DR Hebron, KV 41048	Client: GLenn Spe Address: Contract	rwes_	Analy	ytical Requests &	Method	Lab use only: Custody Seal used Yes in tact Yes	
Phone: 859 - 442 - 231	Contact: Phone: Fax:		क्रांहर	Metals of Metals		Temperature °C	4
54280.01 Skinner Land	afill - 2nd Qtr	•	Seni-Vol Pesticides PCB's	Total Ma Dissolud Cyaniès Volotiles	Diess	Remarks:	Lab ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
W 6-1605 1300 X SKGW 6	6-1014 -37 Va	31/0K2 10	XXX	XXXX	-20	Refer to T	,
W 8/6/5 1335 X SKGW60		u +	1/1	1 1 X	27	- (able -20 ind -21 TAC -22 2 -23 2 -24
w 1 1005 X 5KGW59	3-1014 - 39	3	* *	X			TAC -22 3
W (1030 X SKGW 58	-1014 MS-40	3				J.H. F:	23
V 1055 X SEGWS9	-1014 MSD-41	3				O&M Plan	-24
12 1 1 1 2 1 2 1 2		3					AL 1
	2 (017	3				for the list	
W 1515 X F.B.						of analyte	
w 1 1130 C.D.		2		+++4		-	*
W \ X T.B.						•	X X X X X X X X X X X X X X X X X X X
	·						
,	MANIDE, 1-semi	1-901					3
		Standard	Other				
Relinquisted by: (Signature) 7905 4764 Received by	(Signature) EX (Signature) Date: 6-17-6 (Signature) Date: 0-17-6	Time: 1800 Time: 1020 Time: Time:	Note: SAM S+AM By submitting the	PARD TU	NT VIA	FED EX VD-X Sumples expande	werhoods
			-, cociniting a	ained in our most re	groot to the torne	u., .	Is

...

-..

G	\mathbf{C}_{I}	A	L	
DUMP COALT	ANALYTICAL LA	BOTATOR	EL MC	

CHAIN OF CUSTODY RECORD

OULF COAST AMALYTICAL LABORATORIES, INC 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 225.766.4900 • Fax 225.767.5717	Lab use only Earth Tech	4/342	205061509	7-1-05
Phone 225.759.4900 • Fax 225.767.5717	Client Name	Client #	Workorder #	Due Date
Hebron, Ky 41048 Contact: PAT HIGEINS Phone: 859-442-234	Contact: Phone: Fax:	Analytical Requests & I	Lab use only: Custody Seal used 1968 in tact 1968 Temperature °C	
Sampled By:	Collins Preservatives No Containers 1014 34 Various 7 1014 MS 4 N 7	-X Semi-Volo -X Pesticide -X Pc Bls -X Total Me -X Dicsolved -X Cyenide	Remarks: Refer to T Table 8 (of the fi O & M P fer the of analy	nd -23
Turn Around Time: 24-48 hrs. 3 da	Signature) Date: Time:	Other	t via Est E	
Relifiquished by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)	6-6-05 1800 Signature) Date: Time: 6-7-05 107-107-107-107-107-107-107-107-107-107-	Standard By submitting these samples, you as	t via Fed Ex Turn around	· •

G	C.	\mathbf{A}		
GULF COAST AN	IALYTICAL LAI	BORATORIE	S, INC	

Chain of Cust Record

Lab use only 7-1-05 205061509 Earth Tech 4342 7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Workorder # Phone 225.769.4900 • Fax 225.767.5717 Client Name Client # Due Date Bill to? Lab use only: Report to: Analytical Requests & Method Client: FARTIA TECH **Custody Seal** Address: CONTRACE 4 41048 Contact: Temperature °C Phone: 859-442-2300 Project Name/Number P.O. Number 54280.01 Sampled By: Lab ID No Con-0 57 Date Sample Description Preservatives (2400)Remarks: SKGW58-1014 MSD 41 Various Table ٥ Turn Around Time: ☐ 24-48 hrs. ☐ 3 days ☐ 1 week Standard ☐ Other Note: Samples sent vià Fed Ex Standard Turnaround & somple some Standard Turnaround & somple some Received by; (Signature) Belinquished by: (Signature) Date: Time: 6-14-05 1860 Relinquished by: (Signature) Received by: (Signature) Date: Time: 6-17-05 1020 Relinquished by: (Signature) Received by: (Signature) Date: Time: By submitting these samples, you agree to the terms and

conditions contained in our most recent schedule of services.

WHITE: CLIENT FINAL REPORT — CANARY: LABORATORY — PINK: CLIE

GCAL-06 11/98

DATA VALIDATION REPORT

FOR

SKINNER LANDFILL SITE

EARTH TECH: PROJECT NUMBER 54280

LABORATORY REPORT NUMBER 205061709

PROJECT MANAGER: Ron Rolker

Date: October 10, 2005

Data Validator: Mark Kromis

LIST OF ACRONYMS

BFB Bromofluorobenzene CC Continuing Calibration

CCV Continuing Calibration Verification
CCB Continuing Calibration Blanks
CLP Contract Laboratory Program
CRDL Contract Required Detection Limit
DFTPP Decafluorotriphenylphosphine

GC/MS Gas Chromatograph/Mass Spectrometer

IC Initial Calibration

ICB Initial Calibration Blank
IDL Instrument Detection Limit
ICP Inductively Coupled Plasma
ICS Interference Check Sample
ICV Initial Calibration Verification

ILM Inorganic Analysis Multi-Media Multi-Concentration

INDAM Individual A Mixture INDBM Individual B Mixture mg/L milligrams per liter

MS/MSD Matrix Spike/Matrix Spike Duplicate
OLC Organic Analysis Low Concentration

OLM Organic Analysis Multi-Media Multi-Concentration

%D Percent Difference

% RSD Percent Relative Standard Deviation

PB Preparation Blanks
QC Quality Control
RF Response Factor

RPD Relative Percent Difference
RRF Relative Response Factor
SDG Sample Delivery Group
SOW Statement of Work

µg/L micrograms per liter

US EPA United States Environmental Protection Agency

VOC Volatile Organic Compounds VTSR Validated Time of Sample Receipt

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061709 INORGANICS

Validation of the inorganics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Inorganic Data Review, (US EPA, February, 1994), as appropriate. The results were reported by GCAL under Sample Delivery Group (SDG) 205061709.

GCAL#	Sample Description
20506170901	SKSW52-1014
20506170902	SKSWFB-1014
20506170903	SKGWEB-1014
20506170904	SKSW52-1014 (DISS)
20506170905	SKSWFB-1014 (DISS)
20506170906	SKGWEB-1014 (DISS)
20506170909	SKSW50-1014
20506170910	SKSW50-1014 MS
20506170912	SKSW50-1014 DUP
20506170913	SKSW50-1014 DUPE
20506170914	SKSWEB-1014
20506170915	SKSW51-1014
20506170916	SKSW50-1014 (DISS)
20506170917	SKSW50-1014 MS (DISS)
20506170918	SKSW50-1014 DUP (DISS)
20506170919	SKSW50-1014 DUPE (DISS)
20506170920	SKSWEB-1014 (DISS)
20506170921	SKSW51-1014 (DISS)

INTRODUCTION

Analysis Multi-media Multi-concentration ILM04.1 Statement of Work (SOW). Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values maybe used without reservation. The laboratory to denote specific information regarding the analytical results uses various qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the inorganics data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. Calibration
 - A. Initial Calibration (IC)
 - B. Continuing Calibration (CC)
- 3. Blanks
- 4. Inductively Coupled Plasma (ICP) Interference Check Sample
- 5. Laboratory Control Sample (LCS)
- 6. Duplicate Analysis
- 7. Spike Sample Analysis
- 8. ICP Serial Dilution
- 9. System Performance
- 10. Documentation
- 11. Overall Assessment

1. HOLDING TIMES

All samples for inorganics analyses were analyzed within the 180-day holding time for preserved aqueous samples. Mercury analyses were conducted within the 28-day holding time for aqueous samples undergoing CLP protocol. Cyanide analyses were conducted within the 14-day holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. CALIBRATION

A. Initial Calibration

The percent recoveries for the Initial Calibration Verification (ICV) standard were within Quality Control (QC) limits for all constituents.

B. Continuing Calibration

The percent recoveries for the Continuing Calibration Verification (CCV) standard were within QC limits for all constituents.

3. BLANKS

The Initial Calibration Blank (ICB), Continuing Calibration Blanks (CCB) and Preparation Blanks (PB) were analyzed at the appropriate frequencies. No constituents were detected in the ICB, CCB, and PB blanks above the corresponding Contract Required Detection Limit (CRDL) with the exception of Selenium in the ICB, CCB#5, CCB#9 and Iron in the PB for the run dated 6/30/05. As per the National Functional Guidelines; sample results greater than the IDL but less than 5 times the amount found in any blank should be qualified as (U). If any analyte concentration in the PB is above the CRDL, the lowest concentration of that analyte in the associated samples must be 10 times the PB concentration. Otherwise, all samples associated with that blank should have been redigested and reanalyzed. Technically the samples should have been re-digested and re-analyzed for Selenium and Iron.

4. ICP INTERFERENCE CHECK SAMPLE

Results for the ICP analysis of the Interference Check Sample (ICS) solution AB were within 20% of the true value.

5. LABORATORY CONTROL SAMPLES

Recoveries were within the control limit (80-120%) for all constituents.

6. DUPLICATE ANALYSIS

The laboratory used sample SKSW50-1014 (total and dissolved fractions) for the duplicate sample. The Relative Percent Difference (RPD) between the sample and duplicate results for the total and dissolved fractions were within the acceptance criteria (<20%) for all target analytes.

7. SPIKE SAMPLE ANALYSIS

The laboratory used sample SKSW50-1014 (total and dissolved) for the matrix spike sample. The MS percent recoveries were within the acceptance criteria (75%-125%) with the exception of Selenium (0%) in the total and dissolved fractions. As per the National Functional Guidelines: if the percent recovery is less than 30% qualify detected results with "J" and non-detected results with "R".

8. ICP SERIAL DILUTION

As noted in the National Functional Guidelines: If the analyte concentration is at least 50 times above the IDL, its serial dilution analysis must then agree within 10% of the original determination after corrected for dilution. The serial dilution is performed to determine whether any significant chemical or physical interference's exist due to matrix effects. The serial dilution percent differences were within the acceptance criteria for all target analytes with the exception of Manganese associated with the total and dissolved fractions. As per the National Functional Guidelines, if the serial dilution criterion is not met then qualify the associated results for that analyte with "J".

9. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data.

10. DOCUMENTATION

The documentation submitted for review appeared accurate and in order with the exception of an "E" qualifier associated with the total results for Aluminum, Calcium, Iron, Copper, Magnesium, Potassium, Sodium, and Vanadium; a "N" qualifier associated with the total results for Thallium; and a "N" qualifier associated with the dissolved results for Arseinc. The laboratory qualified the results with an "E" and "N" because they were analyzed in conjunction with the ground water samples for SDG 205601509. The samples analyzed with SDG 205061709 are surface water samples therefore the data validator crossed out the "E" associated with Aluminum, Calcium, Iron, Copper, Magnesium, Potassium, Sodium, and Vanadium and the "N" qualifiers associated with the Thallium and Arsenic results for the surface water samples with a single line and dated and initialized the correction. The laboratory also failed to qualify the dissolved Manganese results with an "E" therefore the data validator manually made the correction.

11. OVERALL ASSESSMENT

The percent recoveries for Lead in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 98%, 80%, and 77%.

The percent recoveries for Nickel in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 80%, 78%, and 79%.

The percent recoveries for Selenium in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 116%, 122%, and 143%.

The percent recoveries for Zinc in the Contract Required Detection Limit (CRDL) standards analyzed on 6/30/05 were 109%, 136%, and 118%.

The percent recoveries for Lead in the Contract Required Detection Limit (CRDL) standards analyzed on 7/1/05 were 102%, 73%, and 78%.

The percent recoveries for Nickel in the Contract Required Detection Limit (CRDL) standards analyzed on 7/1/05 were 68%, 64%, and 65%.

If the CRDL is greater than 120% then detected results greater than the IDL but less than two times the CRDL are qualified as estimated with "J". If the CRDL is below 80% then detected results are qualified as estimated with "J" and the non-detected results were qualified with "UJ".

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061709 SEMIVOLATILE ORGANICS

Validation of the Gas Chromatograph/Mass Spectrometer (GC/MS) semi-volatile organics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999) as appropriate. The results were reported by GCAL under SDG 205061709.

GCAL#	Sample Description		
20506170901	SKSW52-1014		
20506170902	SKSWFB-1014		
20506170903	SKGWEB-1014		
20506170909	SKSW50-1014		
20506170910	SKSW50-1014 MS		
20506170911	SKSW50-1014 MSD		
20506170913	SKSW50-1014 DUPE		
20506170914	SKSWEB-1014		
20506170915	SKSW51-1014		

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Multi-Media, Multi-Concentration OLM04.2 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. The laboratory to denote specific information regarding the analytical results uses various data qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the semivolatile data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. GC/MS Tuning
- 3. Calibration
 - A. IC
 - B. CC
- 4. Blanks
- 5. System Monitoring Compound Recovery
- 6. MS/MSD
- 7. Internal Standards Performance
- 8. Compound Identification
- 9. Constituent Quantitation and Reported Detection Limits
- 10. System Performance
- 11. Documentation
- 12. Overall Assessment

1. HOLDING TIMES

All samples were initially extracted within the seven-day technical holding time and the five-day Validated Time of Sample Receipt (VTSR) method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. GC/MS TUNING

The samples were analyzed on a single GC/MS system, identified as MSSV3. Two decafluorotriphenylphosphine (DFTPP) tunes were run representing the shift in which the standards and samples were analyzed. The DFTPP tunes are acceptable.

3. CALIBRATION

A. Initial Calibration

One IC dated 7/14/05 was analyzed in support of the semivolatile sample analyses. Documentation of the IC was present in the data package, and the Relative Response Factor (RRF), as well as percent % RSD values were accurately reported for all target compounds. The criteria employed for technical data review purposes are different than those used in the method. The laboratory must meet a minimum RRF of 0.01; however, for data review purposes, a RRF criterion of "greater than or equal to 0.05" is applied to all semi-volatile compounds. The RRF's and the average RRF were within the acceptance criteria specified in the method for all reported analytes.

B. Continuing Calibration

Two CC's dated 7/14/05 and 7/15/05 were analyzed in support of the semivolatile sample analyses reported in the data submissions. The RRF's for the CC's were within the acceptance criteria. The percent difference (%D) between the average RRF's and the CC Response Factors were within the acceptance criteria.

4. BLANKS

Two laboratory semivolatile method blanks, two equipment blanks, and a field blank were analyzed with this SDG. The results are summarized below.

Method Blank (MB250947)

Di-n-butylphthalate (0.949 ppb) and Bis-(2-ethylhexyl) phthalate (1.30 ppb) were detected in the blank extracted on 6/20/05.

Method Blank (MB251534)

Di-n-butylphthalate (0.970 ppb) and Bis-(2-ethylhexyl) phthalate (1.53 ppb) were detected in the blank extracted on 6/22/05.

Equipment Blank (SKSWEB-1014)

Diethylphthalate (0.548 ppb) was detected in the Equipment Blank associated with the samples that were collected on 6/17/05.

Equipment Blank (SKGWEB-1014)

Di-n-butylphthalate (6.02 ppb) and Bis-(2-ethylhexyl) phthalate (0.991 ppb) were detected in the Equipment Blank associated with the samples that were collected on 6/16/05. The result was mitigated by the presence of Di-n-butylphthalate and Bis-(2-ethylhexyl) phthalate in the associated extraction blank.

Field Blank (SKSWFB-1014)

Di-n-butylphthalate (0.970 ppb) was detected in the Field Blank associated with the samples that were collected on 6/16/05. The result was mitigated by the presence of Di-n-butylphthalate in the associated extraction blank.

5. SYSTEM MONITORING COMPOUND RECOVERY

All reported semivolatile system monitoring compounds (SMC) were recovered within acceptable control limits with the exception of 2-Fluorobiphenyl (130%), Phenol-d5 (3%), and 2,4,6-Tribromophenol associated with samples SKSW55-1014 MSD. As per the National Functional Guidelines, if the surrogate percent recovery is greater than the upper acceptance criteria qualify detected results for that fraction with "J". If the percent recovery is less than 10% qualify detected analytes for that fraction with "J" and non-detected results for that fraction with "R".

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

Sample SKSW50-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria with the exception of 2,4-Dinitrotoluene, 4-Nitrophenol, N-Nitroso-di-n-propylamine associated with the MS. The %RPD between the MS/MSD are within the acceptance criteria with the exception of the %RPD associated with for 2,4-Dinitrotoluene, s-Chlorophenol, 4-Chloro-3-methylphenol, N-Nitroso-di-n-propylamine, Pentachlorophenol, Phenol, and Pyrene. As per the National Functional Guidelines, no action is taken on MS/MSD data alone.

7. INTERNAL STANDARDS PERFORMANCE

Internal standard (IS) areas were within acceptable limits for the reported semivolatile sample analyses with the exception of Acenaphthene-d10 (low) and Pyrene-d12 (low) associated with sample SKSW50-1014 MSD. Internal standard retention times were within acceptable limits for the reported semivolatile sample analyses. As per the National Functional Guidelines, if the IS area counts are low qualify detected results quantified using the IS with "J" and non-detected results quantified using the IS with "UJ"

8. COMPOUND IDENTIFICATION

All reported semivolatile constituents were correctly identified with supporting chromatograms present in the data package.

9. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for semivolatile constituents

10. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data submitted for review.

11. DOCUMENTATION

The documentation submitted for review appeared accurate and in order.

12. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY – SAMPLE DELIVERY GROUP 205061709 VOLATILE ORGANIC

Validation of the GC/MS volatile organics data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999). as appropriate. The results were reported by GCAL under SDG 205061709.

GCAL#	Sample Description		
20506170901	SKSW52-1014		
20506170902	SKSWFB-1014		
20506170903	SKGWEB-1014		
20506170907	VHBLK		
20506170908	TRIP BLANK		
20506170909	SKSW50-1014		
20506170910	SKSW50-1014 MS		
20506170911	SKSW50-1014 MSD		
20506170913	SKSW50-1014 DUPE		
20506170914	SKSWEB-1014		
20506170915	SKSW51-1014		
20506170922	TRIP BLANK		

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Low Concentration OLC02.0 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. The laboratory to denote specific information regarding the analytical results uses various qualifier codes. The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

- U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The volatiles data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. GC/MS Tuning
- 3. Calibration
 - A. IC
 - B. CC
- 4. Blanks
- 5. System Monitoring Compound Recovery
- 6. MS/MSD
- 7. Laboratory Control Sample
- 8. Internal Standards Performance
- 9. Compound Identification
- 10. Constituent Quantitation and Reported Detection Limits
- 11. System Performance
- 12. Documentation
- 13. Overall Assessment

1. HOLDING TIMES

All samples for Volatile Organic Compounds (VOC) analyses were analyzed within the 14-day technical holding time and the 10-day VTSR method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of 4°C +/- 2°C.

2. GC/MS TUNING

The samples were analyzed on one GC MS system, identified as MSV4. Two bromofluorobenzene (BFB) tunes were run on MSV4. The BFB tunes are acceptable.

3. CALIBRATION

A. Initial Calibration

One IC dated 6/22/05 was analyzed on instrument MSV4 in support of the volatile sample analyses reported in the data submissions. Documentation of the IC standards is present in the data package, and RRF's as well as %RSD values were accurately reported. The criteria employed for technical data review purposes are different than those used in the method. The laboratory must meet a minimum RRF of 0.01; however, for data review purposes, a RRF criterion of "greater than or equal to 0.05" is applied to all volatile compounds.

The RRF's and the average RRF for the IC's dated 6/22/05 were within the acceptance criteria specified in the method for all target compounds with the exception of Acetone and 2-Butanone. As per the National Functional Guidelines, if any initial calibration RRF is less than 0.05, qualify positive results that have acceptable mass spectral identification with "J", using professional judgment, and non-detected analytes as unusable (R). It should be noted that the laboratory did meet the minimum RRF of 0.01 for all target compounds.

The %RSD's were within the acceptance criteria specified in the method for all target analytes with the exception of 1,2,4-Trichlorobenzene. As per the National Functional Guidelines, if the %RSD is greater than 30% then qualify the associated detected results for that compound(s) with "J".

B. Continuing Calibration

One CC dated 6/24/05 was analyzed on instrument MSV4 in support of the volatile sample analyses reported in the data submissions. The percent difference (%D) between the average RRF's and the CC RF's were within the acceptance criteria for all target compounds.

The CC RRF's for the CC dated 6'24'05 were within the acceptance criteria specified in the method for all target compounds with the exception of Acetone. The Acetone results were previously qualified under section 3A above.

4. BLANKS

One laboratory volatile method blank, storage blank, two Equipment blanks, a Field Blank and two Trip Blanks were analyzed with this SDG. The results are summarized below.

MB251570

Methylene chloride (0.048 ppb) was detected in the method blank analyzed on 6/24/05.

Storage Blank (VHBLK)

There were no target compounds detected in the Storage Blank analyzed on 6/24/05.

Equipment Blank (SKSWEB-1014)

Methylene chloride (0.12 ppb) was detected in the Equipment Blank associated with the samples that were collected on 6/17/05. The result was mitigated by the presence of Methylene chloride in the associated Method Blank.

Equipment Blank (SKGWEB-1014)

Methylene chloride (0.14 ppb) was detected in the Equipment Blank associated with the samples that were collected on 6/16/05. The result was mitigated by the presence of Methylene chloride in the associated Method Blank.

Field Blank (SKSWFB-1014)

Methylene chloride (0.11 ppb) was detected in the Field Blank associated with the samples that were collected on 6/16/05. The result was mitigated by the presence of Methylene chloride in the associated Method Blank.

Trip Blank

Methylene chloride (0.12 ppb) was detected in the Trip Blank associated with the samples that were collected on 6/16/05. The result was mitigated by the presence of Methylene chloride in the associated Method Blank.

Trip Blank

Methylene chloride (0.10 ppb) was detected in the Trip Blank associated with the samples that were collected on 6/20/05. The result was mitigated by the presence of Methylene chloride in the associated Method Blank.

5. SYSTEM MONITORING COMPOUND RECOVERY

All reported volatile system monitoring compounds were recovered within acceptable control limits (80%-120%) for all samples.

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample SKGW58-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria.

7. LABORATORY CONTROL SAMPLE

Two Laboratory Control Samples were analyzed in conjunction with this SDG. Recoveries were within the control limit for all constituents.

8. INTERNAL STANDARDS PERFORMANCE

Internal Standard (IS) areas and retention times were within acceptable limits for the reported volatile sample analyses.

9. COMPOUND IDENTIFICATION

All reported VOCs were correctly identified with supporting chromatograms present in the data package.

10. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for VOCs.

11. SYSTEM PERFORMANCE

The analytical system appears to have been working well at the time of these analyses, based on the evaluation of the raw data.

12. DOCUMENTATION

The documentation submitted for review appeared accurate and in order.

13. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

DATA VALIDATION SUMMARY - SAMPLE DELIVERY GROUP 205061709 PESTICIDES

Validation of the Gas Chromatography (GC) pesticides data, as prepared by Gulf Coast Analytical Laboratories (GCAL) for the samples collected from the Skinner Landfill site in June 2005, was conducted by Earth Tech using the National Functional Guidelines for Organic Data Review, (US EPA, October, 1999), as appropriate. The results were reported by GCAL under SDG 205061709.

GCAL#	Sample Description
20506170901	SKSW52-1014
20506170902	SKSWFB-1014
20506170903	SKGWEB-1014
20506170909	SKSW50-1014
20506170910	SKSW50-1014 MS
20506170911	SKSW50-1014 MSD
20506170913	SKSW50-1014 DUPE
20506170914	SKSWEB-1014
20506170915	SKSW51-1014
20506170923	SKSW52-1014 RE
20506170924	SKSWFB-1014 RE
20506170925	SKGWEB-1014 RE

INTRODUCTION

Analyses were performed according to CLP-Organic Analysis Multi-Media, Multi-Concentration OLM04.2 SOW. Results of the sample analyses are reported by the laboratory as either qualified or unqualified. Unqualified results mean that the reported values may be used without reservation. Various qualifier codes are used by the laboratory to denote specific information regarding the analytical results.

The data validation process is intended to evaluate the data on a technical basis. The data package also was subjected to an internal laboratory quality review prior to submission to Earth Tech for data validation.

During the validation process, laboratory-qualified and unqualified data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted or modified by the data user. Final results are therefore, either qualified or unqualified. Validator-qualified results are annotated with the following codes in accordance with the Functional Guidelines:

U The constituent was analyzed for, but was not detected above the level of the associated analytical reporting limit. The associated value is either the sample quantitation limit or the sample detection limit.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Details of the pesticide data validation findings and conclusions are provided in the following sections of this report:

- 1. Holding Times
- 2. Gas Chromatograph/Electronic Capture Detector (GC/ECD) Instrument Performance Check
- 3. IC
- 4. Calibration Verification
- 5. Blanks
- 6. Surrogate Spikes
- 7. Matrix Spike Matrix Spike Duplicate (MS MSD)
- 8. Pesticide Cleanup Checks
- 9. Target Compound Identification
- 10. Constituent Quantitation and Reported Detection Limits
- 11. Documentation
- 12. Overall Assessment

1. HOLDING TIMES

All samples were originally extracted within the seven-day technical holding time and the five-day VTSR method holding time. The cooler temperature upon receipt at the laboratory was within the recommended temperature of $4^{\circ}C + 2^{\circ}C$. The samples were re-extracted outside of the technical and VSTR method holding times.

As per the National Functional Guidelines, if technical holding times are exceeded, qualify all detected compound results as estimated "J" and sample quantitation limits as estimated "UJ".

2. GC/ECD INSTRUMENT PERFORMANCE CHECK

The Performance Evaluation Mixture (PEM) was analyzed at the correct frequency. Absolute retention times were within limits.

The percent resolution between adjacent peaks was within QC limits for the Pesticide Analyte Resolution Check. The percent resolution between adjacent peaks is within QC limits for the Performance Evaluation Mixtures (PEM). The percent breakdown for both 4,4'-DDT and Endrin in each PEM was less than 20.0% for both GC columns. The combined percent breakdown for 4,4'-DDT and Endrin in each PEM was less than 30.0% for both GC columns.

3. INITIAL CALIBRATION

Individual standard mixtures A and B were analyzed at the correct frequencies and concentrations. The percent resolution criterion for Individual standard mixtures A and B were within the acceptance criteria.

The Percent Relative Standard Deviation (%RSD) of the calibration factors for each of the single component pesticides was less than 20% with the exception of alpha-BHC (25.0%) and gamma-BHC (22.9%) associated with the samples analyzed on 6/28/05 (RTX-XLB). The multi-component target compounds were analyzed separately on both columns at a single concentration level. Retention times were determined from a minimum of three peaks. As per the National Functional Guidelines, up to two single component target pesticides (other than the surrogates) per column may exceed the 20% limit but the %RSD must be less than 30.0%.

4. CALIBRATION VERIFICATION

Absolute retention times were within appropriate time retention windows. The percent difference for each of the pesticides and surrogates in the PEM's were within the acceptance criteria of ± 25.0 percent for the calibration dated 6/24/05 on column RTX-35MS.

The percent difference for each of the pesticides and surrogates in the PEM's were within the acceptance criteria of ±25.0 percent with the exception of Endrin (26%) for the calibration dated 6/29/05 (1542) on column RTX-XLB.

The percent difference for each of the pesticides and surrogates in the midpoint concentration of the Individual Standard Mixtures A and B was within the acceptance criteria of ±25.0 percent with the exception of alpha-BHC (40%) associated with INDAM02 analyzed on 6/29/05 at 1902.

As per the National Functional Guidelines, if the percent difference is greater than 25 percent for the compound(s) being quantified, qualify all associated detected results with "J" and non-detects with "UJ".

5. BLANKS

Three laboratory method blanks, two equipment blanks, and a field blank were analyzed with this SDG. The results are summarized below.

Method Blank 250946

Toxaphene was detected at a concentration of 0.384 ppb in Method Blank 250946. This blank corresponds to all samples extracted on 6/20/05.

Method Blank 252189

No constituents were detected above the laboratory-reporting limit. This blank corresponds to all samples extracted on 6/24/05.

Method Blank 255653

No constituents were detected above the laboratory-reporting limit. This blank corresponds to all samples extracted on 6/24/05.

Equipment Blank (SKSWEB-1014)

No constituents were detected above the laboratory-reporting limit in the Equipment Blank associated with the samples that were collected on 6/17/05.

Equipment Blank (SKGWEB-1014)

No constituents were detected above the laboratory-reporting limit in the Equipment Blank associated with the samples that were collected on 6/16/05.

Field Blank (SKSWFB-1014)

No constituents were detected above the laboratory-reporting limit in the Field Blank associated with the samples that were collected on 6/16/05.

6. SURROGATE SPIKES

Decachlorobiphenyl (DCB) and tetrachloro-m-xylene (TCX) surrogate spike recoveries were within the acceptance criteria (30% - 150%) for all samples except as follows:

 Sample ID
 TCX (%)
 DCM (%)

 Method Blank 250946
 31.47
 28/30

As per the National Functional Guidelines, if the surrogate(s) recoveries are between 10 and 30 percent then qualify detected compounds with "J" and non-detected compounds with "UJ".

7. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample SKSW50-1014 was submitted for MS/MSD analysis. The MS/MSD percent recoveries were within the acceptance criteria.

8. PESTICIDE CLEANUP CHECKS

Recoveries of all pesticides and surrogates were within 80-120% for the lot of Florisil cartridges utilized for pesticide cleanup.

9. TARGET COMPOUND IDENTIFICATION

All reported pesticide data were correctly identified with supporting chromatograms present in the data package.

10. CONSTITUENT QUANTITATION AND REPORTED DETECTION LIMITS

Constituent quantitations were correctly calculated and reported for pesticide constituents.

11. DOCUMENTATION

The documentation submitted for review appeared accurate and in order.

12. OVERALL ASSESSMENT

The results are acceptable with the validator-added qualifiers.

REFERENCES

US EPA, 1994. National Functional Guidelines for Inorganic Data Review.

US EPA, 1999. National Functional Guidelines for Organic Data Review.

ANALYTICAL RESULTS

PERFORMED BY

GULF COAST ANALYTICAL LABORATORIES, INC.

Report Date 07/19/2005

GCAL Report 205061709

Deliver To Earth Tech 2373 Progress St Hebron, KY 41048 859-442-2300

Attn Pat Higgins

Customer Earth Tech

Project Skinner Landfill

000001

CASE NARRATIVE

Client: Earth Tech Report: 205061709

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the sample cross-reference page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

SEMIVOLATILE MASS SPECTROMETRY

In the CLP-OLM04.2 Semivolatile analysis, the MS 20506170910 (SKSW-50-1014-MS) for prep batch 294063 had several surrogate, spike and MS/MSD RPD recoveries outside of control limits. The sample was re-analyzed several times with internal standards out. This is attributed to a matrix interference in the sample.

In the CLP-OLM04.2 Semivolatile analysis, the recovery for 4-Nitrophenol was slightly above OC limits in the MSD, and the RPD for Pyrene was exceeded.

SEMIVOLATILE GAS CHROMATOGRAPHY

In the CLP-OLM 04.2 Pesticide/PCB analysis, the surrogate recovery for Decachlorobiphenyl was outside of advisory limits for MB 250946 as indicated on Form II. In batch 295010, the matrix spike recovery for gamma-BHC was outside QC limits.

In the CLP-OLM 04.2 Pesticide/PCB analysis, 250946 MB had Toxaphene present at 0.384 ug/L which was below the CRDL. All samples were re-extracted to verify Toxaphene was attributed to laboratory contamination. Both sets of data are being included in the report.

METALS

Dissolved Chromium was greater than Total Chromium in samples 20506170915 (SKSW51-1014) and 20506170921 (SKSW51-1014 (DISS)). This is attributed to separate aliquots of sample.

In the ILM04.1 - CLP Metals analysis, the MS recoveries were outside the control limits for Arsenic and Selenium for prep batch 293860, for Selenium and Thallium for prep batch 293859 and for Selenium for prep batch 294084. The LCS recoveries were within the control limits. This indicates the analysis is in control and the sample is affected by matrix interference.

The MS recovery is not applicable for Aluminum and Iron for prep batch 293859 because the sample concentration is greater than four times the spike concentration.

In the ILM04.1 - CLP Metals analysis the Sample/Duplicate RPDs for Chromium and

Zinc for prep batch 293860, for Arsenic, Copper, Aluminum, Manganese for prep batch 294084 are not applicable because the sample and/or duplicate concentrations are less than five times the reporting limit.

In the ILM04.1 CLP Cyanide analysis the Sample/Duplicate RPD for Cyanide, Total for prep batch 294046 is not applicable because the sample and/or duplicate concentration is less than five times the reporting limit.

In the ILM04.1 - CLP Metals analysis, Aluminum, Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium, and Vanadium for prep batch 293859 and Manganese for prep batch 294084 are flagged as estimated for samples associated with these batches due to the fact that the percent difference between the original sample results and the serial dilution result is greater than 10. A chemical or physical interference is suspected.

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations Utilized in this Report

ND Indicates the result was Not Detected at the specified RDL

DO Indicates the result was Diluted Out

Indicates the result was subject to Matrix Interference
Indicates the result was Too Numerous To Count

SUBC Indicates the analysis was Sub-Contracted

FLD Indicates the analysis was performed in the Field

PQL Practical Quantitation Limit
MDL Method Detection Limit
RDL Reporting Detection Limit

00:00 Reported as a time equivalent to 12:00 AM

Reporting Flags Utilized in this Report

J Indicates an estimated value

U Indicates the compound was analyzed for but not detected

B (ORGANICS) Indicates the analyte was detected in the associated Method Blank

B (INORGANICS) Indicates the result is between the RDL and MDL

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with ISO Guide 25 and NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with the terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

CURTIS EKKER

DATA VALIDATION MANAGER

GCAL REPORT 205061709

THIS REPORT CONTAINS 80/ PAGES.

Report Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
20506170901	SKSW52-1014	Water	06/16/2005 14:30	06/17/2005 10:20
20506170902	SKSWFB-1014	Water	06/16/2005 15:15	06/17/2005 10:20
20506170903	SKGWEB-1014	Water	06/16/2005 11:30	06/17/2005 10:20
20506170904	SKSW52-1014 (DISS)	Water	06/16/2005 14:30	06/17/2005 10:20
20506170905	SKSWFB-1014 (DISS)	Water	06/16/2005 15:15	06/17/2005 10:20
20506170906	SKGWEB-1014 (DISS)	Water	06/16/2005 11:30	06/17/2005 10:20
20506170907	VHBLK	Water		06/17/2005 10:20
20506170908	TRIP BLANK	Water	06/16/2005 00:00	06/17/2005 10:20
20506170909	SKSW50-1014	Water	06/20/2005 11:35	06/21/2005 08:48
20506170910	SKSW50-1014-MS	Water	06/20/2005 12:00	06/21/2005 08:48
20506170911	SKSW50-1014-MSD	Water	06/20/2005 12:25	06/21/2005 08:48
20506170912	SKSW50-1014-DUP	Water	06/20/2005 12:25	06/21/2005 08:48
20506170913	SKSW51-1014-DUPE	Water	06/20/2005 10:50	06/21/2005 08:48
20506170914	SKSWEB-1014	Water	06/20/2005 14:10	06/21/2005 08:48
20506170915	SKSW51-1014	Water	06/20/2005 10:20	06/21/2005 08:48
20506170916	SKSW50-1014 (DISS)	Water	06/20/2005 11:35	06/21/2005 08:48
20506170917	SKSW50-1014-MS (DISS)	Water	06/20/2005 12:00	06/21/2005 08:48
20506170918	SKSW50-1014-DUP (DISS)	Water	06/20/2005 12:00	06/21/2005 08:48
20506170919	SKSW51-1014-DUPE (DISS)	Water	06/20/2005 10:50	06/21/2005 08:48
20506170920	SKSWEB-1014 (DISS)	Water	06/20/2005 14:10	06/21/2005 08:48
20506170921	SKSW51-1014 (DISS)	Water	06/20/2005 10:20	06/21/2005 08:48
20506170922	TRIP BLANK	Water		06/21/2005 08:48
20506170923	SKSW52-1014 RE	Water	06/16/2005 14:30	06/17/2005 10:20
20506170924	SKSWFB RE	Water	06/16/2005 15:15	06/17/2005 10:20
20506170925	SKSWEB RE	Water	06/16/2005 11:30	06/17/2005 10:20

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

CALED	-	
	-	м.

SKSW52-1014	

Lab Name: GC/	AL Contract:					
ab Code: LA02	24 Case No.:	SAS No.:	SD	G No.: 20506	1709	
Astrix (soil/water)	Water					
Sample wWot: _2	25 (g/ml) ml.	Lab Samole ID:	20506170901			
.evet: (low/med)		Lab File ID: 20	50624P/U4259			
•		Data Callandadi	DE ME DE	Time 1	120	
6 Maisture: not de		Dame Confection.	06/16/05	Time: _14	130	
SC Column: DB	-624-30M ID: .53 (mm)	Date Received:	06/17/05			
nstrument ID: M	ISV4	Date Analyzed:	06/24/05	Time: 10	B12	
 Soil Extract Volum	e:(µL)	Dilution Factor	1	Analyst:	RSP	
		Prep Batch:		_	Batch: 294076	
Sail Aliquot Valum	«(μL)	•			25-1076	_
CONCENTRATI	ION UNITS: ug/L	Analytical Metho	d: OLCO 2.1	-		
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
71-65-6	1,1,1-Trichloroethene	1.0	U	0.010	1.0	7
79-34-5	1,1,2,2-Tetrachioroethene	10	U	0.010	1.0	7
79-00-5	1,1,2-Trichlorosthane	10	U	0.010	1.0	7
75-34-3	1,1-Dichloroethane	1.0	U	0.010	1.0	
75-35-4	1,1-Dichloroethene	1.0	U	0.010	1.0	7
120-82-1	1,2,4-Trichlorobenzene	10	U	0.010	1.0	7
106-93-4	1,2-Dibromosthane	10	U	0.010	1.0	7
95-50-1	1,2-Dichlorobenzene	• 6	U	0.010	1.0	_
107-06-2	1,2-Dichloroshane	10	U	0.010	1.0	7
540-59-0	1,2-Dichlorosthene	• 5	U	0.010	1.0	7
78-87-5	1,2-Dichloropropene	-)	U	0.010	1.0	7
541-73-1	1,3-Dichlorobenzene	1.5	Ü	0.010	1.0	7
106-46-7	1,4-Dichlorobenzene	10	U	0.010	1.0	٦.
78-93-3	2-Butanone	5.0	U	0.010	5.0	٦ <i>۴</i>
591-78-6	2-Hexanone	5.0	U	0.010	5.0	7
106-10-1	4-Methyl-2-pentanone	5.0	U	0.010	5.0	7
67-64-1	Acetone	5.0	U	0.010	5.0	_ ૧
71-43-2	Benzene	.)	U	0.010	1.0	7
75-27-4	Bromodichloromethane	7.0	U	0.010	1.0	7
75-25-2	Bramaform	• 0	U	0.010	1.0	7
74-83-9	Bromomethane	1)	υ	0.010	1.0	
75-15-0	Carbon disulfide	•)	U	0.010	1.0	7
56-23-5	Carbon tetrachloride	1.)	U	0.010	1.0	7
108-90-7	Chlorobenzene	1)	U	0.010	1.0	7
75-00-3	Chloroethane	٠)	U	0.010	1.0	7
67-86-3	Chloroform	1.3	U	0.010	1.0	7
74-87-3	Chloromethane	1.0	U	0.010	1.0	_
124-48-1	Dibramochioramethene	• 3	U	0.010	1.0	7
10061-01-5	cis-1,3-Dichloropropene	• 3	U	0.010	1.0	-
10061-02-6	trans-1,3-Dichloropropene	+ 5	U	0.010	1.0	7
100-41-4	Ethylbenzene	٠ ٦	U	0.010	1.0	-

-thlei

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

SKSW52-1014

Lab Name: GCAL Con	ntract:	·			
Lab Code: LA024 Case No.:		SAS No.:	<	SDG No.: 2050	061709
Matrix: (soil/water) Water					
Sample wt/vol: 25 (g/ml) mL		Lab Sample ID:	2050617090	1	
Level: (low/med)		Lab File ID: 205	50624P/U425	9	
% Moisture: not dec.		Date Collected:	06/16/05	Time:	1430
GC Column: DB-624-30M ID: .53	(mm)	Date Received:	06/17/05		
Instrument ID: MSV4		Date Analyzed:	06/24/05	Time:	1612
Soil Extract Volume:	(µL)	Dilution Factor:	1	Analys	: RSP
Soil Aliquot Volume:	(µL)	Prep Batch:		Analytic	cal Batch: 294076
CONCENTRATION UNITS: ug/L	- 	Analytical Method	: OLCO 2.1	<u> </u>	
CAS NO. COMPOUND		RESULT	Q	MDL	RL
75-09-2 Methylene chloride		2.0	U	0.010	2.0
100-42-5 Styrene		1.0	U	0.010	1.0
127-18-4 Tetrachloroethene	-	1.0	U	0.010	1.0
108-88-3 Toluene		1.0	U	0.010	1.0
79-01-6 Trichloroethene		1.0	U	0.010	1.0
75-01-4 Vinyl chloride		1.0	U	0.010	1.0
1330-20-7 Xylene (total)		1.0	U	0.010	1.0

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SKSW52-1014 Lab Name: GCAL Contract Lab Code: LA024 Case No.: SAS No.: SDG No.: 205061709 Matrix Water Lab Sample ID: 20506170901 Sample wt/vol: Units: Lab File ID: 2050624P/U4259 Level: (low/med) Date Collected: 06/16/05 Time: 1430 % Moisture: not dec. Date Received: 06/17/05 GC Column: RTX-624-30 ID: .53 (mm) Date Analyzed: 06/24/05 Time: 1612 Dilution Factor: 1 Analyst: RJO Instrument ID: MSV4 Soil Extract Volume: _____ (µL) Soil Aliquot Volume: _____ (µL) Number TICs Found: 0 **CONCENTRATION UNITS:** CAS NO. COMPOUND RT EST. CONC. Q

No fice detected

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

Lab Name: GC/	AL Contract:					
ab Code: LA02	24 Case No.:	SAS No.:		SDG No.: 205061	709	
vlatrix: (soil/water)	Water					
Sample wt/vol:	25 (g/ml) mL	Lab Sample ID:	2050617090	9		
_evel: (low/med)		Lab File ID: 205	60624P/U425	7		
% Moisture: not de		Date Collected:	06/20/05	Time: 11	35	
		1	,,,,,			
oc Column. DB	-624-30M ID: .53 (mm)				····	
nstrument ID: N	ISV4	Date Analyzed:	08/24/05	Time: 15	25	
Soil Extract Volum	e: (µL)	Dilution Factor:	1	Analyst:	RSP	
Soil Aliquot Volum	e: (µL)	Prep Batch:		Analytical I	Batch: 294076	
CONOCHEDAT		Analytical Method				
CONCENTRATI	ION UNITS: ug/L	-				
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
71-55-6	1,1,1-Trichloroethane	1.0	TU	0.010	1.0	7
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	0.010	1.0	7
79-00-5	1,1,2-Trichloroethane	1.0	U	0.010	1.0	7
75-34-3	1,1-Dichloroethane	1.0	U	0.010	1.0	7
75-35-4	1,1-Dichloroethene	1.0	U	0.010	1.0	7
120-82-1	1,2,4-Trichlorobenzene	1.0	U	0.010	1.0	7
106-93-4	1,2-Dibromoethane	1.0	υ	0.010	1.0	7
95-50-1	1,2-Dichlorobenzene	1.0	U	0.010	1.0	7
107-06-2	1,2-Dichloroethane	1.0	U	0.010	1.0	7
540-59-0	1,2-Dichloroethene	1.0	U	0.010	1.0	7
78-87-5	1,2-Dichloropropane	1.0	U	0.010	1.0	7
541-73-1	1,3-Dichlorobenzene	1.0	U	0.010	1.0	7
106-46-7	1,4-Dichlorobenzene	1.0	U	0.010	1.0	7
78-93-3	2-Butanone	5.0	U	0.010	5.0	7
591-78-6	2-Hexanone	5.0	U	0.010	5.0	76
108-10-1	4-Methyl-2-pentanone	5.0	Ü	0.010	5.0]
67-64-1	Acetone	5.0	U	0.010	5.0	7
71-43-2	Benzene	1.0	U	0.010	1.0]
75-27-4	Bromodichloromethane	1.0	U	0.010	1.0]
75-25-2	Bromoform	1.0	U	0.010	1.0]
74-83-9	Bromomethane	1.0	Ü	0.010	1.0]
75-15-0	Carbon disulfide	1.0	U	0.010	1.0]
56-23-5	Carbon tetrachloride	1.0	υ	0.010	1.0]
108-90-7	Chlorobenzene	1.0	Ü	0.010	1.0	_]
75-00-3	Chloroethane	1.0	U	0.010	1.0]
67-66-3	Chloroform	0.14	J	0.010	1.0]
74-87-3	Chloromethane	1.0	U	0.010	1.0	3
124-48-1	Dibromochloromethane	1.0	U	0.010	1.0]
10061-01-5	cis-1,3-Dichloropropene	1.0	U	0.010	1.0	_]
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü	0.010	1.0	_]
100-41-4	Ethylbenzene	1.0	U	0.010	1.0	

lolula?

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPL	E NO.
-------	-------

SKSW50-1014

Lab Name: GCAL Cor	neract:				
ab Code: LA024 Case No.:		SAS No.:	soc	No.: 2050	061709
Materic (soil/water) Water					
Sample we/vol: 25 (g/ml) ml.		Lab Sample ID:	20506170909		
evel: (lowlmed)		Lab File ID: 205	50624P/U4257		
6 Moisture: not dec.		Date Collected	06/20/05	Time:	1135
GC Column: DB-624-30M ID: .53	(mm)	Date Received:	06/21/05		
nstrument ID: MSV4		Date Analyzed:	06/24/05	Time:	1525
Soil Extract Volume:	(µL)	Dilution Factor:	1	Analyst	: RSP
Soil Aliquot Volume:	 (µL)	Prep Batch:		Analytic	cal Batch: 294076
CONCENTRATION UNITS: ug/L		Analytical Method	0LCO 2.1		.
CAS NO. COMPOUND		RESULT	Q	MDL	RL
75-09-2 Mothylene chloride		2 0	U	0.010	2.0
100-42-5 Styrene		.)	U	0.010	1.0
127-18-4 Tetrachlorosthene		.)	U	0.010	1.0
108-88-3 Toluene		. 0	U	0.010	1.0
79-01-6 Trichloroethene		. 5	Ü	0.010	1.0
75-01-4 Vinyl chloride		. 0	Ü	0.010	1.0
1330-20-7 Xviene (Intel)		• 0	U	0.010	10

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAM		110	•	
	VOV	VEO	404	A

Lab Name: GCAL	_Contract:				
Lab Code: LA024 Case No.:		SAS No.:		SDG No.: 20	5061709
Matrix: Water		Lab Sample ID:	20506170909)	
Sample wt/vol: Units:		Lab File ID: 20	50624P/U4257		
Level: (low/med)		Date Collected:	06/20/05	Time:	1135
% Moisture: not dec.		Date Received:	06/21/05		
GC Column: RTX-624-30 ID: .53	(mm)	Date Analyzed:	06/24/05	Time:	1525
Instrument ID: MSV4		Dilution Factor:	1	Analýs	t: RJO
Soil Extract Volume:	(µL)				
Soil Aliquot Volume:	(µL)				
Number TICs Found: 0					
CONCENTRATION UNITS:					
CAS NO. COMPOUND		RT	EST.	CONC.	Q
1. No tics detected					

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

CVC	ME4 4	044	
2421	N51-1	VIT	

Lab Name: GCA	Contract:				
ab Code: LA024		SAS No.:	SDO	3 No.: 2050617	709
tatrix: (soil/water) iample wt/vol: 2:	Water 5 (g/ml) mL	Lab Sample ID:	20506170915		
		Lab Facility 200	00040414007		····
evel: (low/med)		Lab File ID: 205	00624P/04267		
6 Moisture: not dec	÷	Date Collected:	06/20/05	Time: _100	20
C Calumn: DB-	824-30M ID: .53 (mm)	Date Received:	06/21/05		
nstrument ID: MS		Date Analyzed:	06/24/05	Time: 19	15
iail Extract Volume	c(µL)	Dilution Factor:	1	Analyst i	RJO
iail Aliquot Valume		Prep Batch:			Satch: 294076
•		Analytical Method	: OLCO 2.1		
CONCENTRATE	ON UNITS: ug/L	-			
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
71-55-6	1,1,1-Trichlorosthane	10	U	0.010	1.0
79-34-5	1,1,2,2-Tetrachioroethene	٠,٥	U	0.010	1.0
79-00-5	1,1,2-Trichlorosthane	• 3	U	0.010	1.0
75-34-3	1,1-Dichlorosthene	1.3	U	0.010	1.0
75-35-4	1,1-Dichloroethene	. :	U	0.010	1.0
120-82-1	1,2,4-Trichlorobenzene	• 3	Ü	0.010	1.0
106-93-4	1,2-Dibromosthane	• :	U	0.010	1.0
95-50-1	1,2-Dichlorobenzene	•	υ	0.010	1.0
107-06-2	1,2-Dichlorosthane	• :	U	0.010	1.0
540-5 9- 0	1,2-Dichlorosthene		Ü	0.010	1.0
78-87-5	1,2-Dichloropropane		U	0.010	1.0
541-73-1	1,3-Dichlorobenzene	1:	U	0.010	1.0
106-46-7	1,4-Dichlorobenzene	• ;	U	0.010	1.0
78-93-3	2-Butanone	5.	U	0.010	5.0
591-78-6	2-Hexanone	5.3	U	0.010	5.0
108-10-1	4-Methyl-2-pentanone	5 :	υ	0.010	5.0
67-64-1	Acetone	5.7	U	0.010	5.0
71-43-2	Benzene	1:	Ü	0.010	1.0
75-27-4	Bramodichlaramethane	4.0	U	0.010	1.0
75-25-2	Bramafarm		U	0.010	1.0
74-83-9	Bromomethane	•	U	0.010	1.0
75-15-0	Carbon disulfide		U	0.010	1.0
56-23-5	Carbon tetrachloride	•	U	0.010	1.0
108-90-7	Chlorobenzene	• •	U	0.010	1.0
75-00-3	Chlorosthene	• 5	u l	0.010	1.0
67-86-3	Chloroform		Ü	0.010	1.0
74-87-3	Chloromethene	15	-	0.010	1.0
124-48-1	Dibromochloromethane		U	0.010	1.0
10061-01-5	cis-1,3-Dichloropropene	- 	Li Li	0.010	1.0
10061-02-6	trans-1,3-Dichloropropere		U	0.010	1.0
100-41-4	Ethylberizene	10	U U	0.010	1.0
	1	1 1 1		U.U.U	

olupt

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

SKSW51-1014

Lab Name: GCAL	Contract:	· · · · · · · · · · · · · · · · · · ·			
Lab Code: LA024 Ca	se No.:	SAS No.:	SDG No.	: 2050617	09
Matrix: (soll/water) Water					
Sample wt/vol: 25 (g/ml)	mL	Lab Sample ID:	20506170915	·····	····
Level: (low/med)		Lab File ID: 20	50624P/U4267		
O/ Majaturas aut dan		Date Collected:	06/20/05	Time: 102	0
GC Column: DB-624-30M	ID:53 (mm)	Date Received:	06/21/05		
Instrument ID: MSV4		Date Analyzed:	06/24/05	Time: 191	5
Soil Extract Volume:	(µL)	Dilution Factor:	1	Analyst: F	พ๐
Soil Aliquot Volume:				Analytical B	atch: 294076
CONCENTRATION UNITS: ug		Analytical Method	: OLCO 2.1		
CAS NO. COMPOUNE		RESULT	Q M	IDL ·	RL
75-09-2 Methylene chio	ride	2.0	1010	0.010	2.0
100-42-5 Styrene		1.0	U	0.010	1.0
127-18-4 Tetrachloroethe	ene	1.0	U	0.010	1.0
108-88-3 Toluene		1.0	U	0.010	1.0
79-01-6 Trichloroethene)	1.0	U	0.010	1.0
75-01-4 Vinyl chloride		1.0	U	0.010	1.0
1330-20-7 Xylene (total)		1.0	U	0.010	1.0

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	SAME	3Jr	NO.
--	------	-----	-----

SKSW51-1014

Lab Name: GCAL	Contract:			L		
Lab Code: LA024 Case No.:		SAS No.:		- SDG No.: <u>20</u>	5061709	
Matric Water		Lab Sample ID:	20506170915			
Sample wt/vol: Units:		Lab File ID: 20	50624P/U4267			
Level: (low/med)		Date Collected:	06/20/05	Time:	1020	
% Moisture: not dec.		Date Received:	06/21/05			_
GC Column: RTX-624-30 ID: .53	(mm)	Date Analyzed:	06/24/05	Time:	1915	
Instrument ID: MSV4		Dilution Factor:	1	Analys	t RJO	
Soil Extract Volume:	(µL)					
Soil Aliquot Volume:	(µL)					
Number TICs Found: 0 CONCENTRATION UNITS: CAS NO. COMPOUND		RT	EST.	CONC.	Q	
1. No tics detected		<u> </u>				_

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Go	CAL	Sample ID: S	SKSW52-10	014	
Lab Code: LA	024	Contract:			
- 100-	SDG No.: 205061709	Lab File ID: 2	2050714/B0	335	
Matrix: Water		Lab Sample ID	· · · · · · · · · · · · · · · · · · ·		
water		Lab Sample ID	2030617		
Sample wt/vol:	1000 Units: mL	Date Collected	: 06/16/05	Time:	1430
Level: (low/med)	LOW	Date Received	: 06/17/05	5	
% Moisture:	decanted: (Y/N)	Date Extracted	: 06/20/05	5	
GC Column: D	B-5MS-30M ID: .25 (mm)	Date Analyzed:	07/14/05	5 Time	1630
	dract Volume: 1000 (μL)	Dilution Factor:	: 1	Analy	st: JAR3
	e: (μL)	Prep Method:	•		
		Analytical Meth			· · · · · · · · · · · · · · · · · · ·
GPC Cleanup: (Y/N) N pH:		-	U 4.2	
0011051555	04444770	Instrument ID:	MSSV3		
CONCENTRATI	ON UNITS: ug/L	Prep Batch: _2	293939	Analytical Ba	tch: 295505
CAS NO.	COMPOUND	RESULT	Q	MDL.	RL
los os 4	IOAS Tricklesses	40.0		0.040	
95-95-4	2,4,5-Trichlorophenol	10.0	U	0.010	10.0
88-06-2	2,4,6-Trichlorophenol	10.0	U	0.010	10.0
120-83-2	2,4-Dichlorophenol	10.0	U	0.010	10.0
51-28-5	2,4-Dinitrophenol	25.0	U	0.010	25.0
121-14-2	2,4-Dinitrotoluene	10.0	U	0.010	10.0
606-20-2	2,6-Dinitrotoluene	10.0	U	0.010	10.0
91-58-7	2-Chloronaphthalene	10.0	U	0.010	10.0
95-57-8	2-Chlorophenol	10.0	U	0.010	10.0
91-57-6	2-Methylnaphthalene	10.0	U	0.010	10.0
88-74-4	2-Nitroaniline	25.0	U	0.010	25.0
88-75-5	2-Nitrophenol	10.0	U	0.010	10.0
91-94-1	3,3'-Dichlorobenzidine	10.0	U	0.010	10.0
99-09-2	3-Nitroaniline	25.0	U	0.010	25.0
534-52-1	2-Methyl-4,6-dinitrophenol	25.0	U	0.010	25.0
59-50-7	4-Chloro-3-methylphenol	10.0	V	0.010	10.0
106-47-8	4-Chloroaniline	10.0	U	0.010	10.0
7005-72-3	4-Chlorophenyl-phenylether	10.0	Ų	0.010	10.0
106-44-5	4-Methylphenol (p-Cresol)	10.0	U	0.010	10.0
83-32-9	Acenaphthene	10.0	U	0.010	10.0
208-96-8	Acenaphthylene	10.0	U .	0.010	10.0
120-12-7	Anthracene	10.0	Ú	0.010	10.0
56-55-3	Benzo(a)anthracene	10.0	U	0.010	10.0
50-32-8	Benzo(a)pyrene	10.0	U	0.010	10.0
205-99-2	Benzo(b)fluoranthene	10.0	U	0.010	10.0
191-24-2	Benzo(g,h,i)perylene	10.0	Ū	0.010	10.0
207-08-9	Benzo(k)fluoranthene	10.0	Ü	0.010	10.0
111-91-1	Bis(2-Chloroethoxy)methane	10.0	Ū	0.010	10.0
111-44-4	Bis(2-Chloroethyl)ether	10.0	Ū	0.010	10.0
108-60-1	bis(2-Chloroisopropyl)ether	10.0	Ü	0.010	10.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

85-68-7 Butylbenzylphthalate	Lab Name: GCA	L	Sample ID: S	KSW52-10	14		_
Matrix Water Lab Sample Dr. 20506170901	Lab Code: LA02	4 Case No.:	Contract:	· 			_
Sample wired: 1000 Units: mL Date Collected: 06/16/05 Time: 1430	SAS No.:	SDG No.: 205061709	Lab File ID: 2	050714/B0	335		
Levet (fourmed) LOW Date Received: 06/17/05	Matrix: Water		Lab Sample ID	2050617	70901		
% Moisture: decarited (YN) Date Extracted: 06/20/05 GC Column: DB-SMS-30M ID 25 (mm) Date Analyzed: 07/14/05 Time: 1630 Concentrated Extract Volume: 100 (µL) Dilution Factor: 1 Analyst: JAR3 CONCENTRATION UNITS: 1.0 (µL) Prep Batch: 293939 Analytical Batch: 295505 CAS NO. COMPOUND RESULT Q MDL RL 117-81-7 bis(2-ethylhesylphirhalate [0, QL/42] JB 0.010 10.0 101-55-3 4-Bromopheny-phenylether 0.0 U 0.010 10.0 105-68-7 Butylbercylphthalate 0.0 U 0.010 10.0 86-74-9 Carbacole 0.0 U 0.010 10.0 84-74-2 Di-n-octylphthalate 10.0 U 0.010 10.0 84-74-2 Di-n-octylphthalate 10.0 U 0.010 10.0 85-70-3 Diberc	Sample wt/vot: 1	000 Units: mL	Date Collected	: 06/16/05	Time:	1430	
Concentrated Extract Volume: 100 1	Level: (low/med)	LOW	Date Received:	: 06/17/05	;		_
Concentrated Extract Volume: 100 1	% Moisture:	decanted: (Y/N)	Date Extracted	: 06/20/05	<u> </u>		_
Concentrated Extract Volume: 1.00	GC Cohumo: DB-		Date Analyzed:	07/14/05	. Time	1630	
Injection Volume: 1.0 (µL) Prep Method: OLIM4 2 SVOA			Dilution Factor	1	Anah	st JAR3	
Analytical Method: OLMO 4.2 Instrument ID: MSSV3							_
Instrument ID: MSSV3 Prep Batch: 293939 Analytical Batch: 295505	•		•		-		
CONCENTRATION UNITS: ug/L Prep Batch 293939 Analytical Batch: 295505	GPC Cleanup: (Y/	N) N pH:	·		042		
CAS NO. COMPOUND RESULT Q MDL RL 117-81-7 bis(2-ethythexyliphthalate [0,047] JB 0.010 10.0 0.015-53 4-Bromophenyl-phenylether 10.0 U 0.010 10.0 0.056-68-7 Butybenzylephthalate 10.0 U 0.010 10.0 0.010 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.010 0.0 0.0 0.010 0.0	CONCENTRATIO	NUNITS: und	Instrument ID:	MSSV3			
117-81-7	CONOLINIO I		Prep Batch: 2	293939	Analytical Ba	tch: 295505	_
101-55-3 4-Bromophenyl-phenylether 10.0 U 0.010 10.0	CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
85-68-7 Butylbenzylphthalate]4
10.0 10.0		I-Bromophenyl-phenylether			0.010		
218-01-9 Chrysene		Butylbenzylphthalate	10.0	U	0.010	10.0	
84-74-2 Di-n-butylphthalate	86-74-8 (Carbazole	10.0	U	0.010	10.0	_
117-84-0 Di-n-octylphthalate -3.0 U 0.010 10.0 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0 10.0 132-64-9 Dibenzofuran 10.0 U 0.010 10.0	218-01-9	Chrysene	L	U	0.010	10.0	
10.0 10.0	84-74-2	Di-n-butylphthalate		U	0.010	10.0	
132-64-9 Dibenzofuran 10.0 U 0.010 10.0	117-84-0	Di-n-octylphthalate	10.0	U	0.010	10.0	_
84-66-2	53-70-3	Diberz(a,h)anthracene	10.0	U	0.010	10.0	
131-11-3	132-64-9	Dibenzofuran	L	U	0.010	10.0	_]
105-67-9 2,4-Dimethylphenol 19.0 U 0.010 10.0 206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 98-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Nitrobenzene <t< th=""><th>84-66-2</th><th>Diethylphthalate</th><th></th><th></th><th>0.010</th><th>10.0</th><th>j</th></t<>	84-66-2	Diethylphthalate			0.010	10.0	j
206-44-0 Fluoranthene 10.0 U 0.010 10.0 86-73-7 Fluorene 10.0 U 0.010 10.0 118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 90-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 25.0 98-95-3 Nitrobenzene 1	131-11-3	Dirnethyl-phthalate			0.010	10.0	_
Section Sect	105-67-9	2,4-Dimethylphenol			0.010	10.0	_
118-74-1 Hexachlorobenzene 10.0 U 0.010 10.0 87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzane 10.0 U 0.010 25.0 98-95-3 Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 100-00 Pyrene 10.0	206-44-0 F	luoranthene		U	0.010	10.0	_
87-68-3 Hexachlorobutadiene 10.0 U 0.010 10.0 77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-od)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 100-0 Pyrene 10.0 <	86-73-7 F	fluorene	10.0	U	0.010	10.0	J
77-47-4 Hexachlorocyclopentadiene 10.0 U 0.010 10.0 67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenol 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	118-74-1	texachlorobenzene	10.0	U	0.010	10.0	j
67-72-1 Hexachloroethane 10.0 U 0.010 10.0 193-39-5 Indeno(1,2,3-cd)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0		lexachlorobutadiene	10.0	U	0.010	10.0	_
193-39-5 Indeno(1,2,3-od)pyrene 10.0 U 0.010 10.0 78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0		lexachlorocyclopentadiene	10.0	U	0.010	10.0	
78-59-1 Isophorone 10.0 U 0.010 10.0 91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	67-72-1	lexachloroethane		U	0.010	10.0]
91-20-3 Naphthalene 10.0 U 0.010 10.0 100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	193-39-5 M	ndeno(1,2,3-od)pyrene	*0.0	U	0.010	10.0]
100-01-6 4-Nitroaniline 25.0 U 0.010 25.0 98-95-3 Nitroberzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	78-59-1 L	sophorone	10.0	U	0.010	10.0]
98-95-3 Nitrobenzene 10.0 U 0.010 10.0 100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	91-20-3 N	laphthalene	10.0	C	0.010	10.0]
100-02-7 4-Nitrophenol 25.0 U 0.010 25.0 87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	100-01-6 4	-Nitroaniline	25.0	Ü	0.010	25.0]
87-86-5 Pentachlorophenol 25.0 U 0.010 25.0 85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	98-95-3 N	litrobenzene	10.0	U	0.010	10.0]
85-01-8 Phenanthrene 10.0 U 0.010 10.0 108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	100-02-7 4	-Nitrophenol	25.0	U	0.010	25.0]
108-95-2 Phenol 10.0 U 0.010 10.0 129-00-0 Pyrene 10.0 U 0.010 10.0	87-86-5 P	Pentachlorophenol	25.0	Ú	0.010	25.0]
129-00-0 Pyrene 10.0 U 0.010 10.0	85-01-8 P	henanthrene	10.0	U	0.010	10.0]
	106-95-2	henol	10.0	Ü	0.010	10.0]
621-64-7 N-Nitroso-di-n-prop ytamine 10.0 U 0.010 10.0	129-00-0 P	yrene	10.0	U	0.010	10.0]
	621-64-7 N	I-Nitroso-di-n-propylamine	10.0	U	0.010	10.0]

solulos asm

Lab Name: GCAL	Sample ID: SKSW52-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.:205061709	Lab File ID: 2050714/B0335
Matrix: Water	Lab Sample ID: 20506170901
Sample wt/vol: 1000 Units: mL	Date Collected: 06/16/05 Time: 1430
Level: (low/med) LOW	Date Received: 06/17/05
% Moisture: decanted: (Y/N)	Date Extracted: 06/20/05
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1630
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 293939 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENT-FIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKSW52-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050714/B0335
Matric Water	Lab Sample ID: 20506170901
Sample wt/vot: Units:	Date Collected: 06/16/05 Time: 1430
Level: (low/med)	Date Received: 06/17/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1630
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
	Instrument ID: MSSV3
Number TICs Found: 1	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1 . 603-11-2 1,2-Benzenedicarboxyfic acid,	6.282 4.99

Lab Name: GC	CAL	Sample ID: 3	SKSW50-1)14	·
Lab Code: LA0	024 Case No.;	Contract:			
SAS No.:	SDG No.: 205061709	Lab File ID: 2	2050714/B0	340	
Matrix: Water		Lab Sample ID	2050617	70909	
Sample wt/vol:	1000 Units: mL	Date Collected			1135
•					1100
Level: (low/med)	LOW	Date Received	: 06/21/0	5	
% Moisture:	decanted: (Y/N)	Date Extracted	1: 06/22/0	5	
GC Column: DE	B-5MS-30M ID: .25 (mm)	Date Analyzed	: 07/14/05	5 Time	: 1804
Concentrated Ex	tract Volume: 1000 (µL)	Dilution Factor	: <u>1</u>	Anaiy	/st: JAR3
	:(µL)	Prep Method:	OLM4.2 S	SVOA	
	//N) N pH:	Analytical Meth	nod: OLM	O 4.2	
C	**************************************	Instrument ID:	MSSV3		
CONCENTRATIO	ON UNITS: ug/L			A 1 - 1 - 1 - 1 - 1	
		Prep Batch:	 		tch: 295505
CAS NO.	COMPOUND	RESULT	Q	MDL	RL
95-95-4	2,4,5-Trichlorophenol	10.0	U	0.010	10.0
88-06-2	2,4,6-Trichlorophenol	10.0	U	0.010	10.0
120-83-2	2,4-Dichlorophenol	10.0	U	0.010	10.0
51-28-5	2,4-Dinitrophenol	25.0	U	0.010	25.0
121-14-2	2,4-Dinitrotoluene	10.0	U	0.010	10.0
606-20-2	2,6-Dinitrotoluene	10.0	U	0.010	10.0
91-58-7	2-Chloronaphthalene	10.0	U	0.010	10.0
95-57-8	2-Chlorophenol	10.0	U	0.010	10.0
91-57-6	2-Methylnaphthalene	10.0	U	0.010	10.0
88-74-4	2-Nitroanillne	25.0	Ų	0.010	25.0
88-75-5	2-Nitrophenol	10.0	U	0.010	10.0
91-94-1	3,3'-Dichlorobenzidine	10.0	U	0.010	10.0
99-09-2	3-Nitroaniline	25.0	U	0.010	25.0
534-52-1	2-Methyl-4,6-dinitrophenol	25.0	U	0.010	25.0
59-50-7	4-Chloro-3-methylphenol	10.0	U	0.010	10.0
106-47-8	4-Chloroaniline	10.0	U	0.010	10.0
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	0.010	10.0
106-44-5	4-Methylphenol (p-Cresol)	10.0	Ü	0.010	10.0
83-32-9	Acenaphthene	10.0	U	0.010	10.0
208-96-8	Acenaphthylene	10.0	U	0.010	10.0
120-12-7	Anthracene	10.0	U	0.010	10.0
56-55-3	Benzo(a)anthracene	10.0	U	0.010	10.0
50-32-8	Benzo(a)pyrene	10.0	U	0.010	10.0
205-99-2	Benzo(b)fluoranthene	10.0	υ	0.010	10.0
191-24-2	Benzo(g,h,i)perylene	10.0	U	0.010	10.0
207-08-9	Benzo(k)fluoranthene	10.0	U	0.010	10.0
111-91-1	Bis(2-Chloroethoxy)methane	10.0	U	0.010	10.0
111-44-4	Bis(2-Chloroethyl)ether	10.0	U	0.010	10.0
108-60-1	bis(2-Chloroisopropyl)ether	10.0	U	0.010	10.0

Lab Name: GCAL	Sample ID: SKSW50-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050714/B0340
Mairtic Water	Lab Sample ID: 20506170909
Sample wt/vol: 1000 Units: mL	Date Collected: 06/20/05 Time: 1135
Levet: (low/med) LOW	Date Received: 06/21/05
% Moisture: decanted (Y'N)	Date Extracted: 06/22/05
GC Column: DB-5MS-30M iD: .25 (mm)	Date Analyzed: 07/14/05 Time: 1804
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 294063 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
117-81-7 bis(2-ethylhexyl)phthalate	10.0 U 0.010 10.0
101-55-3 4-Bromopheryl-phenylether	10.0 U 0.010 10.0
85-68-7 Butylbenzylphthalate	10.0 U 0.010 10.0
86-74-8 Carbazole	10.0 U 0.010 10.0
218-01-9 Chrysene	10.0 U 0.010 10.0
84-74-2 Di-n-butylphthalate	10.0 U 0.010 10.0
117-84-0 Di-n-octylphthalate	10.0 U 0.010 10.0
53-70-3 Dibenz(a,h)anthracene	10.0 U 0.010 10.0
132-64-9 Dibenzofuran	10.0 U 0.010 10.0
84-66-2 Diethylphthalate	10.0 U 0.010 10.0
131-11-3 Dimethyl-phthalate	10.0 U 0.010 10.0
105-67-9 2,4-Dimethylphenol	10.0 U 0.010 10.0
206-44-0 Fluoranthene	10.0 U 0.010 10.0
96-73-7 Fluorene	10.0 U 0.010 10.0
118-74-1 Hexachiorobenzene	10.6 U 0.010 10.0
87-68-3 Hexachlorobutadiene	10.6 U 0.010 10.0
77-47-4 Hexachlorocyclopentaciene	10.C U 0.010 10.0
67-72-1 Hexachloroethane	10.0 U 0.010 10.0
193-39-5 Indeno(1,2,3-cd)pyrene	10.0 U 0.010 10.0
78-59-1 Isophorone	10.0 U 0.010 10.0
91-20-3 Naphthalene	10.0 U 0.010 10.0
100-01-6 4-Nitroaniine	25.0 U 0.010 25.0
98-95-3 Nitrobenzene	10.0 U 0.010 10.0
100-02-7 4-Nitrophenol	25.0 U 0.010 25.0
87-86-5 Pentachlorophenol	25.0 U 0.010 25.0
85-01-8 Phenanthrene	13.0 U 0.010 10.0
108-95-2 Phenol	10.0 U 0.010 10.0
129-00-0 Pyrene	13.0 U 0.010 10.0
621-64-7 N-Nitroso-di-n-propytam ne	10.0 U 0.010 10.0
<u></u>	

Lab Name: GCAL	Sample ID: SKSW50-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.:205061709	Lab File ID: 2050714/B0340
Matrix: Water	Lab Sample ID: 20506170909
Sample wt/vol: 1000 Units: mL	Date Collected: 06/20/05 Time: 1135
Level: (low/med) LOW	Date Received: 06/21/05
% Moisture: decanted: (Y/N)	Date Extracted: 06/22/05
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1804
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 294063 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SKSW50-1014
Lab Code: LA024 Case No :	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050 714/B0340
Matrix Water	Lab Sample ID: 20506170909
Sample wt/vol: Units:	Date Collected: 06/20/05 Time: 1135
Levet: (low/med)	Date Received: 06/21/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1804
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C Instrument ID: MSSV3
Number TICs Found: 1	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1. Unknown	2.603 10.8

Lab Name: G	CAL	Sample ID: SKSW51	-1014	
Lab Code: LA	024	Contract:		
SAS No.:	SDG No.: 205061709	Lab File ID: 2050714/	B0345	
Matrix: Water		Lab Sample ID: 2050	6170915	
Sample wt/vol:	1000 Units: mL	Date Collected: 06/20	/05 Time: 1020	

Level: (low/med) LOW	Date Received: 06/21	/05	
% Moisture:	decanted: (Y/N)	Date Extracted: 06/22	/05	
GC Column: D	B-5MS-30M ID: <u>.25</u> (mm)	Date Analyzed: 07/14	/05 Time: 1955	
Concentrated E	xtract Volume: 1000 (µL)	Dilution Factor: 1	Analyst: JAR3	
	e: (µL)	Prep Method: OLM4.	2 SVOA	
	Y/N) N pH:	Analytical Method: Ol	.MO 4.2	
Gr C Cleanup. (pri.			
CONCENTRATI	ION UNITS: ug/L	Instrument ID: MSSV3		
CONCENTION	ON ON 16. Ug/L	Prep Batch: 294063	Analytical Batch: 295505	<u>. </u>
CAS NO.	COMPOUND	RESULT Q	MDL RL	
95-95-4	2,4,5-Trichlorophenol	10.0 U	0.010 10.0	
88-06-2	2,4,6-Trichlorophenol	10.0 U	0.010 10.0	
120-83-2	2,4-Dichlorophenol	10.0 U	0.010 10.0	
51-28-5	2,4-Dinitrophenol	25.0 U	0.010 25.0	
121-14-2	2,4-Dinitrotoluene	10.0 U	0.010 10.0	
606-20-2	2,6-Dinitrotoluene	10.0 U	0.010 10.0	
91-58-7	2-Chloronaphthalene	10.0 U	0.010 10.0	
95-57-8	2-Chlorophenol	10.0 U	0.010 10.0	
91-57-6	2-Methylnaphthalene	10.0 U	0.010 10.0	
88-74-4	2-Nitroaniline	25.0 U	0.010 25.0	
88-75-5	2-Nitrophenol	10.0 U	0.010 10.0	
91-94-1	3,3'-Dichlorobenzidine	10.0 U	0.010 10.0	
99-09-2	3-Nitroaniline	25.0 U	0.010 25.0	
534-52-1	2-Methyl-4,6-dinitrophenol	25.0 U	0.010 25.0	
59-50-7	4-Chloro-3-methylphenol	10.0 U	0.010 10.0	
106-47-8	4-Chloroaniline	10.0 U	0.010 10.0	
7005-72-3	4-Chlorophenyi-phenylether	10.0 U	0.010 10.0	
106-44-5	4-Methylphenol (p-Cresol)	10.0 U	0.010 10.0	
83-32-9	Acenaphthene	10.0 U	0.010 10.0	
208-96-8	Acenaphthylene	10.0 U	0.010 10.0	
120-12-7	Anthracene	10.0 U	0.010 10.0]
56-55-3	Benzo(a)anthracene	10.0 U	0.010 10.0]
50-32-8	Benzo(a)pyrene	10.0 U	0.010 10.0	
205-9 9- 2	Benzo(b)fluoranthene	10.0 U	0.010 10.0	
191-24-2	Benzo(g,h,i)perylene	10.0 U	0.010 10.0	
207-08-9	Benzo(k)fluoranthene	10.0 U	0.010 10.0	
111-91-1	Bis(2-Chloroethoxy)methane	10.0 U	0.010 10.0]
111-44-4	Bis(2-Chloroethyl)ether	10.0 U	0.010 10.0]
108-60-1	his(2-Chloroisopropy()ether	10.0	0.010 10.0	- 1

Lab Name: GCAL	Sample ID: SKSW51-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050714/80345
Matrix Water	Lab Sample ID: 20506170915
Sample wt/vol: 1000 Units: mL	Date Collected: 06/20/05 Time: 1020
Level: (low/med) LOW	Date Received: 06/21/05
% Moisture: decanted: (Y'N)	Date Extracted: 06/22/05
GC Column: DB-5MS-30M ID: _25 (mm	Date Analyzed: 07/14/05 Time: 1955
Concentrated Extract Volume: 1000 (µL	Dilution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 294063 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
117-81-7 bis(2-ethythexyl)phthalate	10.0 U 0.010 10.0
101-55-3 4-Bromopherryl-phenylether	10.0 U 0.010 10.0
85-68-7 Butylbenzylphthalate	10.0 U 0.010 10.0
86-74-8 Carbazole	10.0 U 0.010 10.0
218-01-9 Chrysene	10.0 U 0.010 10.0
84-74-2 Di-n-butylphthalate	10.0 U 0.010 10.0
117-84-0 Di-n-octylphthalate	10 0 U 0.010 10.0
53-70-3 Dibenz(a,h)anthracene	10 0 U 0.010 10.0
132-64-9 Dibenzofuran	10.0 U 0.010 10.0
84-66-2 Diethylphthalate	10.0 U 0.010 10.0
131-11-3 Dimethyl-phthalate	10.0 U 0.010 10.0
105-67-9 2,4-Dirnethylphenol	10.0 U 0.010 10.0
206-44-0 Fluoranthene	10.0 U 0.010 10.0
86-73-7 Fluorene	10.0 U 0.010 10.0
118-74-1 Hexachlorobenzene	10.0 U 0.010 10.0
87-68-3 Hezachlorobutadiene	10.0 U 0.010 10.0
77-47-4 Hexachlorocyclopentaciene	10.0 U 0.010 10.0
67-72-1 Hexachloroethane	10.0 U 0.010 10.0
193-39-5 Indeno(1,2,3-cd)pyrene	10.0 U 0.010 10.0
78-59-1 Isophorone	10.0 U 0.010 10.0
91-20-3 Naphthalene	10.0 U 0.010 10.0
100-01-6 4-Nitroaniline	25.0 U 0.010 25.0
98-95-3 Nitrobenzene	10.0 U 0.010 10.0
100-02-7 4-Nitrophenol	25.0 U 0.010 25.0
87-86-5 Pentachlorophenol	25.0 U 0.010 25.0
85-01-8 Phenanthrene	10.0 U 0.010 10.0
108-95-2 Phenol	10.0 U 0.010 10.0
129-00-0 Pyrene	10.0 U 0.010 10.0
621-64-7 N-Nitroso-di-n-propylamine	10 0 0.010 10.0
· · · · · · · · · · · · · · · · · ·	

Lab Name: GCAL	Sample ID: SKSW51-1014
Lab Code: LA024 Case No.:	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050714/B0345
Matrix: Water	Lab Sample ID: 20506170915
Sample wt/vol: 1000 Units: mL	Date Collected: 06/20/05 Time: 1020
Level: (low/med) LOW	Date Received: 06/21/05
% Moisture: decanted: (Y/N)	Date Extracted: 06/22/05
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1955
Concentrated Extract Volume: 1000 (µL)	Difution Factor: 1 Analyst: JAR3
Injection Volume: 1.0 (µL)	Prep Method: OLM4.2 SVOA
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
	Instrument ID: MSSV3
CONCENTRATION UNITS: ug/L	Prep Batch: 294063 Analytical Batch: 295505
CAS NO. COMPOUND	RESULT Q MDL RL
86-30-6 N-Nitrosodiphenylamine	10.0 U 0.010 10.0
95-48-7 o-Cresol	10.0 U 0.010 10.0

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: GCAL	Sample ID: SK\$W51-1014
Lab Code: LA024 Case No :	Contract:
SAS No.: SDG No.: 205061709	Lab File ID: 2050714/80345
Matrix: Water	Lab Sample ID: 20506170915
Sample wt/vol: Units:	Date Collected: 06/20/05 Time: 1020
Level: (low/med)	Date Received: 06/21/05
% Moisture: not dec.	Date Extracted:
GC Column: DB-5MS-30M ID: .25 (mm)	Date Analyzed: 07/14/05 Time: 1955
Concentrated Extract Volume: 1000 (µL)	Dilution Factor: 1 Analyst: JAR3
Injection Valume: 1.0 (μ L)	Prep Method:
GPC Cleanup: (Y/N) N pH:	Analytical Method: SW-846 8270C
	Instrument ID: MSSV3
Number TICs Found: 2	
CONCENTRATION UNITS:	
CAS NO. COMPOUND	RT EST. CONC. Q
1. Unknown	2.722 8.25
2. Unknown	2.91 9.71

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SKSW52-1014
Lab Code: LA024 Case No.:	Contract:
Matrix: Water	SAS No.: SDG No.: 205061709
Sample wt/vol: 1000 Units: mL	Lab Sample ID: 20506170901
Level: (low/med) LOW	Date Collected: 06/16/05 Time: 1430
% Moisture: decanted: (Y/N)	
GC Column: ID: (mm	
Concentrated Extract Volume: 1000 (µL	
Soil Aliquot Volume: (µL) Dilution Factor: 1 Analyst: TLS
Injection Volume: 1 (µL	Prep Method: OLM4.2 PEST/PCB
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLMO 4.2
Prep Batch: 293938 Analytical Batch: 294768	Sulfur Cleanup: (Y/N) N Instrument iD: GCS12A
CONCENTRATION UNITS: ua/L	Lab File ID: 2050623/SV12A035
•	
CAS NO. COMPOUND	RESULT Q MDL RL
72-54-8 4,4'-DDD	0.100 U 0.000100 0.100
72-55-9 4,4'-DDE	0.100 U 0.000100 0.100
50-29-3 4,4'-DDT	0.100 U 0.000100 0.100
309-00-2 Aldrin	0.050 U 0.000100 0.050
12674-11-2 Aroclor-1016	1.00 U 0.000100 1.00
11104-28-2 Aroclor-1221	2.00 U 0.000100 2.00
11141-16-5 Aroclor-1232	1.00 U 0.000100 1.00
53469-21-9 Aroclor-1242	1.00 U 0.000100 1.00
12672-29-6 Aroclor-1248	1.00 U 0.000100 1.00
11097-69-1 Aroclor-1254	1.00 U 0.000100 1.00
11096-82-5 Aroclor-1260	1.00 U 0.000100 1.00
60-57-1 Dieldrin	0.100 U 0.000100 0.100
959-98-8 Endosulfan I	0.050 U 0.000100 0.050
33213-65-9 Endosulfan II	0.100 U 0.000100 0.100
1031-07-8 Endosulfan sulfate	0.100 U 0.000100 0.100 U
72-20-8 Endrin	
7421-93-4 Endrin aldehyde 53494-70-5 Endrin ketone	
76-44-8 Heptachlor 1024-57-3 Heptachlor epoxide	0.050 U 0.000100 0.050 0.050 U 0.000100 0.050
72-43-5 Methoxychlor	
	
8001-35-2 Toxaphene	
319-84-6 alpha-BHC	0.050 U 0.000100 0.050 U
5103-71-9 alpha-Chlordane	0.050 U 0.000100 0.050
319-85-7 beta-BHC	0.050 U 0.000100 0.050
319-86-8 delta-BHC	0.050 U 0.000100 0.050
58-89-9 gamma-BHC (Lindane)	0.050 U 0.000100 0.050
5103-74-2 gamma-Chlordane	0.050 U 0.000100 0.050

10/3/25

FORM | ORG-1

1D ORGANICS ANALYSIS DATA SHEET

Lab Name:	GCAL	Sample ID: SI	CSW50-1014			
Lab Code:	LA024 Case No.:	Contract				_
Matric Wa		SAS No.:		SDG No.:	205061709	
Sample wt/vo	t: 1000 Units: mL	Lab Sample ID:	2050617090	09		
Level: (low/m	ed) LOW	Date Collected:	06/20/05	Time:	1135	
% Moisture:	decanted: (YN)	Date Received:	06/21/05			
		Date Extracted:	06/24/05			
	Extract Volume: 1000 (µL)	Date Analyzed:	06/25/05	Time:	2248	
	lalume: (µL)	Dilution Factor:				
	me: 1 (µL)	Prep Method:				-
		Analytical Metho				
	px (Y/M) N pH:	•			· · · · · · · · · · · · · · · · · · ·	
Prep Batch:	294172 Analytical Batch: 294773	Sulfur Cleanup:	(M.M) N	Instrument I	D: GCS12A	
CONCENTRA	ATION UNITS: up/L	Lab File ID:	2050625/	SV12A025		
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
72-54-8	4,4-000	0.100	U	0.000100	0.100	7
72-55-0	4,4-DDE	0.100	U	0.000100	0.100	
50-29-3	4,4'-DOT	0.100	U	0.000100	0.100	
309-00-2	Aldrin	0.050	U	0.000100	0.050	
12674-11-2	Aroclor-1016	1.00	U	0.000100	1.00	7
11104-28-2	Aroclar-1221	2.00	U	0.000100	2.00	\neg
11141-16-5	Aroctor-1232	1.00	U	0.000100	1.00	_
53469-21-9	Aroclor-1242	1.00	U	0.000100	1.00	
	Aractor-1248	1.00	U	0.000100	1.00	
11097-89-1	Araclor-1254	1.00	U	0.000100	1.00	
11096-82-5	Aroclor-1260	1.00	Ü	0.000100	1.00	-
80-57-1	Dieldrin	0.107	U	0.000100	0.100	_
959-98-8	Endosulfan I	0.051	U	0.000100	0.050	\neg
	Endosulfan II	C 100	- U	0.000100	0.100	
1031-07-8	Endosulfan sulfate	0.100	U	0.000100	0.100	_
72-20-8	Endrin	c.x	U I	0.000100	0.100	- us
	Endrin aldehyde	0.100	 	0.000100	0.100	_
	Endrin ketone	0.10	- Ū	0.000100	0.100	_
76-44-8	Heptachlor	0.050	- i	0.000100	0.050	-
1024-57-3	Heptachlor eposéde	0.050	U U	0.000100	0.050	
72-43-5	Methanychlor	0.500	 	0.000100	0.500	
8001-35-2	Toughene	5.30	- 1	0.000100	5.00	
319-84-6	alpha-BHC	0 050	i)	0.000100	 	- u
5103-71-9	<u> </u>				0.050	_ "·
	alpha-Chlordane	0.050	U	0.000100	0.050	
319-85-7	beta-BHC	0.050	U	0.000100	0.050	
319-86-8	delta-BHC	0.050	U	0.000100	0.050	
58-89-9	gamme-BHC (Lindane)	0.050	U	0.000100	0.050	
5103-74-2	gemma-Chlordane	0.050	i ii	0.000100	0.050	

عوم ا

FORM 1 ORG-1

1D ORGANICS ANALYSIS DATA SHEET

Lab Name: GCAL	Sample ID: SKSW51-10	14		
Lab Code: LA024 Case No.:	Contract:			
Matrix: Water	SAS No.:	SDG No.:	205061709	
Sample wt/vol: 1000 Units: mL	Lab Sample ID: 205061	70915		
Level: (low/med) LOW	Date Collected: 06/20/0	Time:	1020	
% Moisture: decanted: (Y/N)	Date Received: 06/21/0	5		
GC Column: ID: (mm)	Date Extracted: 06/24/0	5		
Concentrated Extract Volume: 1000 (µL)	Date Analyzed: 06/26/0		0017	
Soil Aliquot Volume: (µL)		Analys		
			n. <u>331</u>	
Injection Volume: 1 (µL)	Prep Method: OLM4.2 F		<u></u>	—
GPC Cleanup: (Y/N) N pH:	Analytical Method: OLM	O 4.2		
Prep Batch: 294172 Analytical Batch: 294773	Sulfur Cleanup: (Y/N) N	Instrument	ID: GCS12A	
CONCENTRATION UNITS; ug/L	Lab File ID: 2050	625/SV12A030		
CAS NO. COMPOUND	RESULT Q	MDL	RL	
72-54-8 4,4'-DDD	0.100 U	0.000100	0.100	
72-55-9 4,4'-DDE	0.100 U	0.000100	0.100	
50-29-3 4,4'-DDT	0.100 U	0.000100	0.100	
309-00-2 Aldrin	0.050 U	0.000100	0.050	
12674-11-2 Aroclor-1016	1.00 U	0.000100	1.00	
11104-28-2 Aroclor-1221	2.00 U	0.000100	2.00	
11141-16-5 Aroclor-1232	1.00 U	0.000100	1.00	
53469-21-9 Aroclor-1242	1.00 U	0.000100	1.00	
12672-29-6 Aroclor-1248	1.00 U	0.000100	1.00	
11097-69-1 Aroclor-1254	1.00 U	0.000100	1.00	
11096-82-5 Aroclor-1260	1.00 U	0.000100	1.00	
60-57-1 Dieldrin	0.100 U	0.000100	0.100	
959-98-8 Endosulfan I	0.050 U	0.000100	0.050	
33213-65-9 Endosulfan II	0.100 U	0.000100	0.100	
1031-07-8 Endosulfan sulfate	0.100 U	0.000100	0.100	<u> </u>
72-20-8 Endrin	0.100 U	0.000100	0.100	่่ ่านว
7421-93-4 Endrin aldehyde	0.100 U	0.000100	0.100	
53494-70-5 Endrin ketone	0.100 U	0.000100	0.100	
76-44-8 Heptachlor	0.050 U	0.000100	0.050	_
1024-57-3 Heptachlor epoxide	0.050 U	0.000100	0.050	
72-43-5 Methoxychlor	0.500 U	0.000100	0.500	
8001-35-2 Toxaphene	5.00 U	0.000100	5.00	ہلـــ
319-84-6 alpha-BHC	0.050 U	0.000100	0.050	u3
5103-71-9 alpha-Chlordane	0.050 U	0.000100	0.050	
319-85-7 beta-BHC	0.050 U	0.000100	0.050	
319-86-8 delta-BHC	0.050 U	0.000100	0.050	
58-89-9 gamma-BHC (Lindane)	0.050 U	0.000100	0.050	
5103-74-2 gamma-Chlordane	0.050 U	0.000100	0.050	

10/13/05

FORM | ORG-1

1D ORGANICS ANALYSIS DATA SHEET

Lab Name:	GCAL	Sample ID St	(SW52-1014 R	E		_
Lab Code:	LA024 Case No.:	Contract:				
Matric Wa		SAS No.		SDG No.:	205061709	<u> </u>
Sample wt/voi	t 1000 Units: ml.	Lab Sample ID:	20506170923	3		
Level: (low/mo		Date Collected:	06/16/05	Time:	1430	
% Moisture:	decanted: (Y/N)	Date Received:	06/17/05			_
GC Column:	1D: (mm)	Date Extracted:	06/24/05			_
Concentrated		Date Analyzed:	06/25/05	Time:	2043	
	folume: (µL)	Dilution Factor:	1	 Analysi		_
	ms: 1 (µL)	Prep Method:			*	_
		Analytical Metho				_
		•			D. CCC12A	
Prep Descrit	295010 Analytical Batch 295507	•		•	D. GLS1ZA	
CONCENTRA	ATION UNITS: ug/L	Lab File IO:	2050625/5	V12A018		·
CAS NO.	COMPOUND	RESULT	Q	MDL	RL	
72-54-8	4,4-000	0.100	Ú	0.000100	0.100] น1
72-55 -0	4,4-00E	0.100	Ú	0.000100	0.100	\supset 1
50-29-3	4.F-00T	0.100	IJ	0.000100	0.100	」 ∖
309-00-2	Aldrin	0.050	IJ	0.000100	0.050	
	Aroclor-1016	1.00	U	0.000100	1.00	
	Aroclar-1221	2.00	IJ	0.000100	2.00	
11141-16-5	Aroclor-1232	1.00	Ú	0.000100	1.00	_] [
	Arodor-1242	1.00	Ü	0.000100	1.00	
12672-29-6	Aroclor-1248	1.00	U	0.000100	1.00	
11097-89-1	Aroclor-1254	1.00	IJ	0.000100	1.00	
	Aroclor-1260	1.00	Ų	0.000100	1.00	_ í
60-57-1	Dieldrin	0.100	U	0.000100	0.100	
959-98-8	Endosulfan I	0.050	Ü	0.000100	0.050	_
	Endosulfan II	0.100	IJ	0.000100	0.100	
	Endosulfan sulfate	0.100	U	0.000100	0.100	_
72-20-8	Endrin	0.100	Ų	0.000100	0.100	_
	Endrin aldehyde	0.100	U	0.000100	0.100	
53494-70-5	Endrin ketone	0.100	Ĺl	0.000100	0.100	_
7 6-44-8	Heptachtor	0.050	U	0.000100	0.050	_
	Heptachtor eposéde	0.050	U	0.000100	0.050	_
72-43-5	Methanychlar	0.50C	(J	0.000100	0.500	_]
8001-35-2	Toraphene	5 00	Ĺl	0.000100	5.00	_] [
	alphe-BHC	0.0 5 C	U	0.000100	0.050	
5103-71-9	alphe-Chlordene	0.050	U	0.000100	0.050	-
319-85-7	beta-BHC	0.050	U	0.000100	0.050	
319-86-8	delta-BHC	0.050	LI	0.000100	0.050	<u></u> !
58-89-9	gamme-BHC (Lindane)	0.050	Ų	0.000100	0.050	- 1
5103-74-2	gamma-Chlordane	0.050	U	0.000100	0.050	۔ ہا

FORM | ORG-1

U.S. EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Name:	GCAL		Contract:				
Code: W No.:	LA024	Case No.:	SAS No.:			SDG No.:	205061709
		EPA Sample No		Lab Samp			
		SKSW52-1014	_	2050617090			
		SKSWFB-1014		2050617090			
		SKGWEB-1014	Val	2050617090			
		SKSW52-1014 (DISS)		2050617090	4	_	
		SKSWFB-1014 (DISS)	_	2050617090	5	_	
		SKGWEB-1014 (DISS)	_	2050617090	6		
		SKSW50-1014	-	2050617090	9		
		SKSW50-1014-MS		2050617091	0		
		SKSW50-1014-DUP	_	2050617091	2		
		SKSW51-1014-DUPE	_	2050617091	3		
		SKSWEB-1014	_	2050617091	4		
		SKSW51-1014		2050617091	5		
		SKSW50-1014 (DISS)	_	2050617091	6		
		SKSW50-1014-MS (DISS)	-	2050617091	7		
		SKSW50-1014-DUP (DISS)	,	2050617091	8		
		Were ICP interelement corrections	applied ?	Yes / No	YES		
		Were ICP background corrections a		Yes / No	YES	_	
		If yes-were raw data generate application of background corre		Yes / No	NO	_	
Commen	nts:						
			-				
cortify	that this data	package is in compliance with the term	ne and condition	one of the cont	ract hot	h technicall	y and for
complete he com	eness for other puter readable	er than the conditions detailed above. Fee data submitted on the diskette has been by the following signature.	Release of this	s data containe	d in this	hardcopy d	ata package and in
Signatu	re: 74 м	1/18/05	٨	lame: M	ARK I	PETERA	1AN
•	•						

COVER PAGE - IN

ILMO4.1

U.S. EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Name:	GCAL		Contract:			
Code: V No.:	LA024	Case No.:	SAS No.:		SDG No.:	205061709
		EPA Sample No SKSW51-1014-DUPE (DISS SKSWEB-1014 (DISS)		Lab Samp 20506170919 20506170920 20506170921)	
		SKSW51-1014 (DISS)				
		Were ICP interelement corrections ap	oplied ?	Yes / No	YES	
		Were ICP background corrections ap If yes-were raw data generated	before	Yes / No	YES	
avnen	ntex:	application of background correct	ions ?	Yes / No	NO	
e com	eness for oth puter readabl	package is in compliance with the terms or than the conditions detailed above. Re te data submitted on the diskette has bee by the following signature.	lease of this	s data containe	d in this hardcopy o	lata package and in
ignatu		18/05		lame: <u>M</u>	ARK PETER	MAN
	'_	liele	_	ītle: A	IETALS SUPE	

COVER PAGE - IN

ILMO4.1

EPA		

Lab Name: G		INORGAŅIC ANALYS Coi	iis data shee atrast:	SKS	W52-1014	
			•		No. 20506	24700
Lab Code: LA	024 Case No.:	SA:	S No.:	SDG	No.: 20506	31709
Matrix (soil / w	rater) Water	Lab S	ample ID: 2056	06170901		
Level: (low / ma	ed)					· · · · · · · · · · · · · · · · · · ·
		Date	Received: 08/1	17/05		
% Solids:			•			
Concentration	Units (ug/L or mg/kg dry wei	ght): ug/L				
CAS No.	Analyte	Concentration	С	Q	М	1
429-90-5	Aluminum	97.2	В	1	P	
440-36-0	Antimony	4.00	Ū	 	P	1
440-38-2	Arsenic	3.9	В		P	
440-39-3	Barium	49.5	В		P	1
440-41-7	Beryllium	0.1	U		P	1
440-43-9	Cadmium	0.1	U		Р	1
440-70-2	Calcium	89800		Z	P	į
440-47-3	Chromium	5.1	В		Р	1
440-48-4	Cobalt	0.6	U		P	1
440-50-8	Copper	0.7	U	E	P	1
439-89-6	Iron	38.3	В	1	P	lu
439-92-1	Lead	1.4	U		P	uj
439-95-4	Magnesium	25600		ار ا	Р	
439-96-5	Manganese	7.6	В	E	Р	17
439-97-6	Mercury	0,1	U		AV	
440-02-0	Nickel	0.4	U		P	UJ
440-09-7	Potassium	3400	В	2	Р	1 .
782-49-2	Selenium	3.5	υ	N	P	1 R
440-22-4	Silver	1.1	U		Р	1
440-23-5	Sodium	52800		P	P	1
440-28-0	Thallium	4.1	U	X	P	Į.
440-82-2	Vanadium	10.9	В	JZ.	P	1
440-66-6	Zinc	5.6	В		P	1
7-12-5	Cyanide	0.6	U		AS	
			·) :	oligios psk
Color Before:	COLORLESS	Clarity Before:	CLEAR	Text)re:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artife	icts:	
Comments:			<u> </u>			

U.S. EPA - CLF

EPA SAMPLE NO.

INORGANIC	ANAI VSIS	DATA	SHEET
MACHINE MO	THE PARTY OF	-	

SKSW52-1014 (DISS)

Lab Name: GC		Contra	ect:	I		
C-d 1 44					No.: 2050	16 4700
Lab Code: LA024 Case No.:		SAS N	40.:		40.: <u>2050</u>	01709
Astric (soil / w	water Water	Lab San	npie ID: _20506	170904		
.evet: { low / me	d) _	Data Da		ne		
		Date Re	ceived: 06/17/	<u>vs</u>		
% Solids:						
Concentration t	Jnits (ug/L or mg/kg dry we	iahi): ua/L				
						_
CAS No.	Analyte	Concentration	С	Q	М]
429-90-5	Aluminum	30.0	В		P	1
140-36-0	Antimony	4.00	U		P	1
140-38-2	Arsenic	3.8	U	ملار	Р	1
140-39-3	Barium	48.2	В		Р]
140-41-7	Beryllium	0.1	U		Р]
40-43-9	Cadmium	0.1	Ü		Р	1
40-70-2	Calcium	94500			P]
40-47-3	Chromium	0.8	υ		P	1
40-48-4	Cobelt	0.6	υ		Р	7
40-50-8	Copper	0.7	U		Р	7
39-89-6	Iron	10.5	U		Р	7
39-92-1	Lead	1,4	Ü		P	US
39-95-4	Magnesium	26100	1		P	7
39-96-5	Manganese	3.9	В	E	P	15
39-97-6	Mercury	0.1	U		AV	1
40-02-0	Nickel	0.4	U		P	lus
10-09-7	Potaesium	3510	В		P	7
82-49-2	Selenium	3.5	U	N	P	R
40-22-4	Silver	1.1	U		P	- '
40-23-5	Sodium	54900			P	
140-28-0	Thelium	4.1	U		P	1
40-62-2	Vanadium	10.9	В		Р	7
140-66-6	Zinc	8.9	В		Р	┪

FORM I - IN

Comments:

ILM04.1

000603

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SKSW50-1014	
SKSW50-1014	

_ab Name: _GC						
	AL	Contr	ract:			
ab Code: LA0	24 Case No.:	SAS	No.:	SDG No	o.: <u>2050</u>	61709
Matrix: (soil / wa	iter) Water	Lab Sai	mple ID: 20506	170909		
_evel: (low./ med	d)		-			·····
% Solids:		Date Ki	eceived: 06/21/	<u>05</u>		
76 30Hds.						•
Concentration U	Inits (ug/L or mg/kg dry weigl	nt) : ug/L				
CAS No.	Analyte	Concentration	C	Q	M	1
429-90-5	Aluminum	46.2	В		P	İ
440-36-0	Antimony	4.00	U		P	1
440-38-2	Arsenic	7.2	В		Р	1
440-39-3	Barium	50.5	В		Р	1
440-41-7	Beryllium	0.1	U	~ 	Р	1
440-43-9	Cadmium	0.1	Ü		Р	1
440-70-2	Calcium	85200			Р	1
440-47-3	Chromium	29.8			Р	1
440-48-4	Cobalt	0.6	υ		Р	1
440-50-8	Copper	1.4	В	··	. P	1
439-89-6	Iron	132			Р	1 .
439-92-1	Lead	1.4	Ü	***	Р	ี นว
439-95-4	Magnesium	26500			Р	
439-96-5	Manganese	10.4	В	<u>5</u> Æ	Р	13
439-97-6	Mercury	0.1	U		AV	1
440-02-0	Nickel	0.4	U		Р	us
440-09-7	Potassium	3310	В		Р	1
782-49-2	Selenium	3.5	U	N	P	1R
440-22-4	Silver	1.1	U		Р	1
440-23-5	Sodium	51200			Р	1
440-28-0	Thallium	4.1	U	· · · · · · · · · · · · · · · · · · ·	Р	1
440-62-2	Vanadium	11.8	В		Р	1
440-66-6	Zinc	7.1	В		Р]丁
7-12-5	Cyanide	0.6	Ú		AS	7

Comments:

EPA SAMPLE NO.

INORGANIC ANAL	YSIS	DATA	SHEET
----------------	------	------	-------

SKSW51-1014	

Lab Code: LA024 Matric (soil / water) W. Level: (low / med) % Solids: Concentration Units (ug/L CAS No. 7429-80-5 Aluminu 7440-36-0 Antimon	or mg/kg dry weigt	Lab Sam Date Red	ple ID: 20506 beived: 06/21	5170915	No.: 20506	1709
Level: (low / med) % Solids: Concentration Units (ug/L CAS No. 7429-90-5 Aluminu	or mg/kg dry weigt Analyte	Date Red	peived: 06/21			-
Concentration Units (ug/L CAS No.	or mg/kg dry weigt Analyte	ng: ug/L		105		•
Cancentration Units (ug/L CAS No. 7429-90-5 Aluminu	Analyte					
CAS No. 429-90-5 Aluminu	Analyte					
7429-90-5 Aluminu		Concentration				
			С	Q	M	
'440-36-0 Antimon	in .	43.6	В		P	
	у	4.00	U		P	
440-38-2 Arsenic		9.1	В		Р	
440-39-3 Berium		50.4	В		Р	
440-41-7 Berylliur	n	0.1	Ü		P	
440-43-9 Cadmiu	n	0.1	υ		Р	
440-70-2 Calcium		95300			P	
440-47-3 Chromiu	m	7.6	В		Р	
440-48-4 Cobelt		0.6	U		Р	•
440-50-8 Copper		0.7	U		Р	
439-89-6 Iron		27.9	В			u
439-92-1 Leed	·	1.4	U			uJ
439-95-4 Magnes		30600			P	_
439-96-5 Mangan		5.4	В	 E E		丁
439-97-6 Mercury		0.1	U		AV	
440-02-0 Nickel		0.4	U		Р	us
440-09-7 Potassi		3080	В		Р	•
782-49-2 Selenius	n	3.5	U	N	Р	K
440-22-4 Silver		1.1	U		P	
440-23-5 Sodium		56100			Р	
440-28-0 Thellium	· · · · · · · · · · · · · · · · · · ·	4.1	U	<u> </u>	Р	
440-82-2 Vanadiu	<u>m</u>	12.9	B		P	-
440-66-6 Zinc		4.8	B			J
7-12-5 Cyanide		0.6	U		AS	

Comments:

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

	monauto /uu	121010 071	SKSW50-1014 (DISS)
Lab Name:	GCAL	Contract:	<u> </u>

Matrix: (soil / water) Water Lab Sample ID: 20506170916 Level: (low / med) Date Received: 06/21/05

% Solids:

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M	7
7429-90-5	Aluminum	25.2	В		P	1
7440-36-0	Antimony	4.00	U		P	┪
7440-38-2	Arsenic	6.8	В		P	7
7440-39-3	Barium	53.1	В		P	7
7440-41-7	Beryllium	0.1	U		P	7
7440-43-9	Cadmium	0.1	U		P	7
7440-70-2	Calcium	89000			P	1
7440-47-3	Chromium	5.4	В		P	1
7440-48-4	Cobalt	0.6	U		P	1
7440-50-8	Copper	0.7	U		P	7
7439-89-6	Iron	10.5	U		P	7
7439-92-1	Lead	1.4	U		Р	٦u
7439-95-4	Magnesium	28000			P	1
7439-96-5	Manganese	7.4	В	₽ ,E	P	17
7439-97-6	Mercury	0.1	U		AV	7
7440-02-0	Nickel	0.4	U	···	P	٦ ر
7440-09-7	Potassium	3460	В		Р	1
7782-49-2	Selenium	3.5	U	N	P	1 4
7440-22-4	Silver	1.1	U	·	P	1
7440-23-5	Sodium	53000			P	1
7440-28-0	Thallium	4.1	U	· · · · · · · · · · · · · · · · · · ·	P	1
7440-62-2	Vanadium	11.5	В		P	1
7440-66-6	Zinc	8.3	В		P	1

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	···
Comments:					

1

EPA SAMPLE NO.

INORGANIC ANALY	'SIS	DATA	SHEET
-----------------	------	------	-------

SKSW51-	.1014	(DLSS)	

SAS No. SDG No. 205061709 Abstrict (soil / wester) Wister Lab Sample ID: 20506170921 Solidar: Soil / wester) Wister Lab Sample ID: 20506170921 Solidar: Soil / Wister Soil /	.ab Name: _G	CAL	Contra	nct:			
Date Received: O6/21/05	Lab Code: LA024 Case No.:		SAS N	SDG	SDG No.: 205061709		
Date Received: Date	Astric (soil / w	ster) Water	Lab Sam	nole ID: 205061	170921		
Concentration Units (ug/L or mg/kg dry weight): ug/L CAS No. Analyte Concentration C Q M 429-90-5 Altumium 18.1 B P 440-36-0 Antimory 4.00 U P 440-38-2 Arsenic 8.7 B P 440-38-2 Arsenic 8.7 B P 440-41-7 Beryllum 0.1 U P 440-41-7 Beryllum 0.1 U P 440-40-3 Cadrium 94700 P 440-40-3 Cadrium 12.7 P 440-40-3 Chomium 12.7 P 440-40-8 Copper 0.7 U P 440-50-8 Copper 0.7 U P 439-92-1 Leed 1.4 U P 439-93-4 Magnesium 29400 P 439-93-5 Manganese 4.8 B P 440-02-0 Nickel 0.4 U P 440-02-0 Nickel 0.4 U P 440-02-7 Potessium 3.5 U N P 440-02-8 Selenium 3.5 Sodium P 440-23-5 Sodium 53700 P 440-22-4 Sheer 1.1 U P 440-23-5 Sodium 13.2 B P 440-66-6 Zinc 9.3 B P	.evel: (low / me	M)					
Concentration Units (ug/L or mg/kg dry weight): ug/L CAS No. Analyte Concentration C Q M 429-80-5 Akuminum 18.1 B P 440-36-0 Antimorny 4.00 U P 440-38-2 Arsenic 8.7 B P 440-38-2 Arsenic 8.7 B P 440-39-3 Barlum 48.6 B P 440-41-7 Berytium 0.1 U P 440-41-7 Berytium 0.1 U P 440-41-7 Cadmium 0.1 U P 440-40-3 Chromium 12.7 P 440-40-3 Chromium 12.7 P 440-40-5 Copper 0.7 U P 439-89-8 Iron 35:3 B P 439-89-4 Magnasium 29400 P 439-98-5 Marganese 4.8 B P 439-98-5 Marganese 4.8 B P 440-02-0 Nickel 0.4 U P 440-00-7 Potassium 3.5 U N P 440-00-7 Potassium 3.5 U N P 440-00-7 Potassium 3.5 U N P 440-22-4 Silver 1.1 U P 440-23-5 Sodium 53700 P 440-66-6 Zinc 9.3 B P			Date Re	ceived: <u>06/21/</u>	<u> </u>		
CAS No. Analyte Concentration C Q M 429-90-5 Aluminum 18.1 B P 440-38-0 Antimorny 4.00 U P 440-38-2 Arsenic B.7 B P 440-39-3 Barium 48.6 B P 440-41-7 Beryllium 0.1 U P 440-41-7 Beryllium 0.1 U P 440-43-9 Cadmium 94700 P 440-47-3 Chromium 12.7 P 440-44-3 Chromium 12.7 P 440-50-8 Copper 0.7 U P 440-50-8 Copper 0.7 U P 439-95-4 Magnesium 29400 P 439-95-5 Manganese 4.8 B P 439-97-8 Mercury 0.1 U P 440-02-0 Nickel 0.4 U P 440-02-0 Nickel 0.4 U P 440-02-1 Selenium 3.5 U N P 440-23-5 Sodium 53700 P 440-23-5 Sodium 13.2 B P 440-66-6 Zinc 9.3 B P	6 Solids:						
Alaminum	Concentration (Units (ug/L or mg/kg dry weig	iht): ug/L				
440-38-0 Antimorry 4.00 U	CAS No.	Analyte	Concentration	С	Q	M	
Ado-38-2 Arsenic 8.7 B	429-90-5	Aluminum	18.1	В		P	ł
440-39-3 Barium	440-36-0	Antimony	4.00	U		Р	Ì
440-41-7 Beryllium 0.1	440-38-2	Arsenic	8.7	В		Р	
440-43-9 Cadmium			48.6	В		P	l
440-70-2 Calcium	440-41-7	Beryllium	0.1	U		P]
12.7	440-43-0	Cadmium	0.1	U		Р	
440-48-4 Cobalt	440-70-2	Calcium	94700			P]
440-50-8 Copper 0.7	440-47-3	Chromium	12.7			P	
439-89-8 Iron	440-48-4	Cobelt	0.6	U		Р	1
1.4 U	440-50-8	Copper	0.7	U	-	P	1
439-95-4 Magnesium 29400 P 439-96-5 Manganese 4.8 B PE P T AV 440-02-0 Nickel 0.4 U P AV 440-09-7 Potessium 3060 B P R A40-02-4 Silver 1.1 U P A40-02-5 Sodium 53700 P A40-02-5 Sodium 4.1 U P A40-02-6 Thallium 4.1 U P A40-02-2 Vanadium 13.2 B P A40-06-6 Zinc 9.3 B P	439-89-6	tron	35.3	В		P	1 _
439-96-5 Manganese	439-92-1	Leed	1.4	Ų		Р	เนว
439-96-5 Marganese	439-95-4	Magnesium	29400			P	1
Marcury	439-96-5	Manganese	4.8	В	RE	P	丁
440-02-0 Nickel 0.4 U	439-97-6		0.1	U		AV	1
440-09-7 Potassium 3060 B P 782-49-2 Selenium 3.5 U N P 440-22-4 Silver 1.1 U P 440-23-5 Sodium 53700 P 440-28-0 Thallium 4.1 U P 440-62-2 Vanadium 13.2 B P 440-66-8 Zinc 9.3 B P	440-02-0		0.4	U		P	W
782-49-2 Selenium 3.5 U N P 440-22-4 Silver 1.1 U P 440-23-5 Sodium 53700 P 440-28-0 Thaffium 4.1 U P 440-62-2 Vanadium 13.2 B P 440-66-6 Zinc 9.3 B P	440-09-7	Potassium	3060	В		P	1
440-22-4 Silver 1.1 U P 440-23-5 Sodium 53700 P 440-28-0 Thellium 4.1 U P 440-62-2 Vanadium 13.2 B P 440-66-6 Zinc 9.3 B P		Selenium	3.5	U	N N	P	R
440-23-5 Sodium 53700 P 440-28-0 Thallium 4.1 U P 440-62-2 Vanadium 13.2 B P 440-66-6 Zinc 9.3 B P	440-22-4	Silver	1.1	U		P	' '
440-28-0 Thaffium 4.1 U P 440-62-2 Vanadium 13.2 B P 440-66-6 Zinc 9.3 B P		Sodium				P	1
440-62-2 Vanadium 13.2 B P 440-66-6 Zinc 9.3 B P				U			1
440-66-6 Zinc 9.3 B P			13.2	В		P	i
) also							1
						le	hslor
	Color Before:	COLORLESS	<u> </u>		_		
	Color After:	COLORLESS	Clarity After: C	LEAR	Artifa	cts:	
Color After: CLEAR Artifacts:	Comments:						